Symbiotic Encounter: Shape Memory Alloy Actuators in Architecture
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis aims to provide a comprehensive reference on the effective integration of shape memory alloys into architectural design and design. Despite growing interest in SMAs for kinetic structures and adaptive facades, there is currently a fragmented understanding of how to leverage their unique properties in the built environment. Designers lack consolidated resources that map the capacities and limitations of different SMA materials and configurations with respect to functional objectives, manufacturing constraints, and performance goals. My research will gather dispersed knowledge across materials science, mechanics, and fabrication processes relevant to architectural SMAs. After conducting extensive research and different stages of prototyping, a final responsive wall piece will be designed and built that interacts with users responding to different stimuli including touch, sound, or distance. The outcome of this research on the integration of shape memory alloys (SMAs) into architectural design and construction can contribute significantly to designers and the field of architecture in several ways • Unlocking new design possibilities: • Facilitating interdisciplinary collaboration• Developing design guidelines and tools • Advancing responsive architecture• Inspiring future research and innovation