VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Utilizing Hierarchical Clusters in the Design of Effective and Efficient Parallel Simulations of 2-D and 3-D Ising Spin Models

TR Number

Date

2004-05-10

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In this work, we design parallel Monte Carlo algorithms for the Ising spin model on a hierarchical cluster. A hierarchical cluster can be considered as a cluster of homogeneous nodes which are partitioned into multiple supernodes such that communication across homogenous clusters is represented by a supernode topological network. We consider different data layouts and provide equations for choosing the best data layout under such a network paradigm. We show that the data layouts designed for a homogeneous cluster will not yield results as good as layouts designed for a hierarchical cluster. We derive theoretical results on the performance of the algorithms on a modified version of the LogP model that represents such tiered networking, and present simulation results to analyze the utility of the theoretical design and analysis. Furthermore, we consider the 3-D Ising model and design parallel algorithms for sweep spin selection on both homogeneous and hierarchical clusters. We also discuss the simulation of hierarchical clusters on a homogeneous set of machines, and the efficient implementation of the parallel Ising model on such clusters.

Description

Keywords

Ising model, hierarchical clusters, LogP model, parallel computing, performance analysis & prediction

Citation

Collections