VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Employing Intracranial EEG Data to Decipher Sleep Neural Dynamics

TR Number

Date

2023-01-24

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Over the course of a typical night, sleep is comprised of multiple different stages that involve changes in brainwave patterns. Intracranial EEG (iEEG) is an invasive brain recording technique used in hospital settings in epileptic patients to determine the focus of their seizure activity. The intracranial data recorded allows one to directly observe the neural activity of deep brain structures such as the hippocampus and to detect single unit activity and local field potentials, thus providing a level of physiological detail normally available only in animal studies. In this thesis we employ intracranial data to advance our understanding of sleep neural dynamics in humans, and to this end its focus is in two areas : (1) developing a way of sleep scoring iEEG data and (2) investigating the neural dynamics of a particular waveform found during sleep, the sleep spindle, and its role in memory consolidation. Typically, iEEG recordings do not include electrooculogram or electromyogram recordings, which are normally needed for sleep scoring—especially for scoring rapid-eye movement (REM) sleep. We identified differences in alpha power between wake and REM sleep to develop a methodological way to reliably differentiate between wake and REM sleep states. We also wanted to investigate the neural dynamics involved with a particular brainwave seen during sleep, the sleep spindle, which is thought to be important for sleep-mediated memory consolidation. Historically, sleep spindles were thought to occur synchronously across the cortex, but recent findings using iEEG have identified that sleep spindles can also be local. We utilized intracranial EEG to confirm previous findings that iEEG can identify local sleep spindles. In addition to identifying local sleep spindles, we aimed to investigate the potential role that sleep spindles have on learning and memory using standard targeted memory reactivation paradigms for iii both procedural and declarative memories. We found that local sleep spindles occurred at a specific time following auditory stimulation for both procedural and declarative memories. This work has opened up the use of iEEG recordings to investigations of REM sleep dynamics and laid the groundwork for examining the role of local sleep spindles in memory consolidation.

Description

Keywords

Sleep, iEEG, Alpha Wave, Sleep Spindle, REM Sleep

Citation

Collections