An Exploration of the Acoustic Detection and Localization of Small Uncrewed Aerial Systems

TR Number

Date

2022-10-06

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

With the increasing number of small Uncrewed Aerial Systems (sUAS) in the airspace, the need for robust Detect and Avoid (DAA) technologies is clear. This is especially true when considering the potential for non-cooperative aircraft with unknown intent. Many UAS use high resolution cameras to perform omnidirectional scans of their nearby airspace to localize traffic. These scans can be quite computationally expensive and often necessitate the use of costly and heavy hardware components. Ground-based solutions such as centralized, stationary towers are often expensive, difficult to proliferate, and have the disadvantage of not being onboard the aircraft and as such not always local to the airspace conflict.

A feasibility exploration of acoustic detection and localization of non-cooperative aircraft using a low-cost microphone array, computationally inexpensive beamforming algorithms, and filtering techniques, is performed. The cost of the system is minimized by utilizing widely proliferated microphone hardware originally designed for short-range voice detection, as well as a small Uncrewed Aerial Systems (sUAS) from a developmental kit. Lastly, an exploration is conducted to maximize the detection range of the microphone system. A comparison of filtering techniques to try to filter sUAS self-noise is compared to alternative methods such as a ballistic sampling period where the motors of the sUAS are momentarily turned off to reduce noise. A final recommendation of a multi-sensor suite of microphones, cameras, along with other potential sensors, is determined.

Description

Keywords

UAS, Localization, Ballistic, Detect and Avoid

Citation

Collections