Spatially-Encoding Hydrogels With DNA to Control Cell Signaling
dc.contributor.author | Ramani, Namrata | en |
dc.contributor.author | Figg, C. Adrian | en |
dc.contributor.author | Anderson, Alex J. | en |
dc.contributor.author | Winegar, Peter H. | en |
dc.contributor.author | Oh, EunBi | en |
dc.contributor.author | Ebrahimi, Sasha B. | en |
dc.contributor.author | Samanta, Devleena | en |
dc.contributor.author | Mirkin, Chad A. | en |
dc.date.accessioned | 2024-01-31T17:44:43Z | en |
dc.date.available | 2024-01-31T17:44:43Z | en |
dc.date.issued | 2023-09 | en |
dc.description.abstract | Patterning biomolecules in synthetic hydrogels offers routes to visualize and learn how spatially-encoded cues modulate cell behavior (e.g., proliferation, differentiation, migration, and apoptosis). However, investigating the role of multiple, spatially defined biochemical cues within a single hydrogel matrix remains challenging because of the limited number of orthogonal bioconjugation reactions available for patterning. Herein, a method to pattern multiple oligonucleotide sequences in hydrogels using thiol-yne photochemistry is introduced. Rapid hydrogel photopatterning of hydrogels with micron resolution DNA features (≈1.5 µm) and control over DNA density are achieved over centimeter-scale areas using mask-free digital photolithography. Sequence-specific DNA interactions are then used to reversibly tether biomolecules to patterned regions, demonstrating chemical control over individual patterned domains. Last, localized cell signaling is shown using patterned protein-DNA conjugates to selectively activate cells on patterned areas. Overall, this work introduces a synthetic method to achieve multiplexed micron resolution patterns of biomolecules onto hydrogel scaffolds, providing a platform to study complex spatially-encoded cellular signaling environments. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1002/adma.202301086 | en |
dc.identifier.eissn | 1521-4095 | en |
dc.identifier.issn | 0935-9648 | en |
dc.identifier.issue | 36 | en |
dc.identifier.pmid | 37221642 | en |
dc.identifier.uri | https://hdl.handle.net/10919/117763 | en |
dc.identifier.volume | 35 | en |
dc.language.iso | en | en |
dc.publisher | Wiley | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/37221642 | en |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | DNA materials | en |
dc.subject | cell signaling | en |
dc.subject | extracellular matrix | en |
dc.subject | hydrogels | en |
dc.subject | photopatterning | en |
dc.subject.mesh | DNA | en |
dc.subject.mesh | Signal Transduction | en |
dc.subject.mesh | Hydrogels | en |
dc.subject.mesh | Photochemistry | en |
dc.title | Spatially-Encoding Hydrogels With DNA to Control Cell Signaling | en |
dc.title.serial | Advanced Materials | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal Article | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/Chemistry | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |