Spatially-Encoding Hydrogels With DNA to Control Cell Signaling

dc.contributor.authorRamani, Namrataen
dc.contributor.authorFigg, C. Adrianen
dc.contributor.authorAnderson, Alex J.en
dc.contributor.authorWinegar, Peter H.en
dc.contributor.authorOh, EunBien
dc.contributor.authorEbrahimi, Sasha B.en
dc.contributor.authorSamanta, Devleenaen
dc.contributor.authorMirkin, Chad A.en
dc.date.accessioned2024-01-31T17:44:43Zen
dc.date.available2024-01-31T17:44:43Zen
dc.date.issued2023-09en
dc.description.abstractPatterning biomolecules in synthetic hydrogels offers routes to visualize and learn how spatially-encoded cues modulate cell behavior (e.g., proliferation, differentiation, migration, and apoptosis). However, investigating the role of multiple, spatially defined biochemical cues within a single hydrogel matrix remains challenging because of the limited number of orthogonal bioconjugation reactions available for patterning. Herein, a method to pattern multiple oligonucleotide sequences in hydrogels using thiol-yne photochemistry is introduced. Rapid hydrogel photopatterning of hydrogels with micron resolution DNA features (≈1.5 µm) and control over DNA density are achieved over centimeter-scale areas using mask-free digital photolithography. Sequence-specific DNA interactions are then used to reversibly tether biomolecules to patterned regions, demonstrating chemical control over individual patterned domains. Last, localized cell signaling is shown using patterned protein-DNA conjugates to selectively activate cells on patterned areas. Overall, this work introduces a synthetic method to achieve multiplexed micron resolution patterns of biomolecules onto hydrogel scaffolds, providing a platform to study complex spatially-encoded cellular signaling environments.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1002/adma.202301086en
dc.identifier.eissn1521-4095en
dc.identifier.issn0935-9648en
dc.identifier.issue36en
dc.identifier.pmid37221642en
dc.identifier.urihttps://hdl.handle.net/10919/117763en
dc.identifier.volume35en
dc.language.isoenen
dc.publisherWileyen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/37221642en
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectDNA materialsen
dc.subjectcell signalingen
dc.subjectextracellular matrixen
dc.subjecthydrogelsen
dc.subjectphotopatterningen
dc.subject.meshDNAen
dc.subject.meshSignal Transductionen
dc.subject.meshHydrogelsen
dc.subject.meshPhotochemistryen
dc.titleSpatially-Encoding Hydrogels With DNA to Control Cell Signalingen
dc.title.serialAdvanced Materialsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Chemistryen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023 - AdvMat.pdf
Size:
2.54 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: