Serum-free media development using black soldier fly protein isolate and hydrolysate for cultivated meat

TR Number

Date

2024-01-03

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The global demand for animal proteins is projected to rise by 14% by 2030, amplifying the environmental toll of conventional animal-based protein production. Cultivated meat technology can alleviate the growing demand for protein and address the environmental and ethical concerns associated with conventional livestock farming. However, it faces a critical challenge: the high cost of cell culture media, primarily due to the use of Fetal Bovine Serum (FBS). Substituting serum with protein hydrolysates reduces the production expense of cultivated meat products and promotes establishing a sustainable food system. This study explores black soldier fly larvae (Hermetia illucens) as an emerging ethical and cost-effective alternative protein source to replace serum in media, particularly for cultivated meat production. The development of BSFL protein isolate involved defatting the larva, followed by protein extraction. The protein isolate was then hydrolyzed using an enzyme to produce BSFL hydrolysates. The goal was to supplement the protein isolate and hydrolysates with a serum-free media (B8) and determine their efficacy in replacing the 20% serum requirement for the cell culture of Bovine Satellite Cells. The BSFL protein isolate developed had a crude protein content of 80.42% and an amino acid composition conducive to cell proliferation. Experimental concentrations, ranging from 0.006 mg/ml for hydrolysate to 0.06 mg/ml for protein isolate, exhibited enhanced cell growth. Data from dsDNA quantification revealed no significant difference in growth between cells fed serum-containing growth media (BSC-GM) and BSFL protein hydrolysate (BSFLH_1h) over a short-term study. Results from the multi-passage growth study revealed that BSFLH_1h significantly improved cell growth compared to B8 over 4 passages. However, its doubling time was slower than BSC-GM. Additionally, it was observed that the protein isolate and hydrolysate were cytotoxic at higher concentrations. In the future, identifying and removing the cytotoxic compounds can further optimize the media composition. Immunostaining using Pax7 and DAPI identified supplemented media-maintained satellite cell identity of Bovine satellite cells, offering crucial insights into cellular proliferation. Furthermore, since each cell type requires varying serum and nutrients, testing these isolates and hydrolysates on different cell lines can provide better insight into creating a universal serum-free media.

Description

Keywords

Cultivated meat, serum-free media, black soldier fly, protein hydrolysate, bovine satellite cells

Citation

Collections