VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Design of a High Temperature GaN-Based Variable Gain Amplifier for Downhole Communications

dc.contributor.authorEhteshamuddin, Mohammeden
dc.contributor.committeechairHa, Dong Samen
dc.contributor.committeememberDhillon, Harpreet Singhen
dc.contributor.committeememberKoh, Kwang-Jinen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2017-02-08T09:00:24Zen
dc.date.available2017-02-08T09:00:24Zen
dc.date.issued2017-02-07en
dc.description.abstractThe decline of easily accessible reserves pushes the oil and gas industry to explore deeper wells, where the ambient temperature often exceeds 210 °C. The need for high temperature operation, combined with the need for real-time data logging has created a growing demand for robust, high temperature RF electronics. This thesis presents the design of an intermediate frequency (IF) variable gain amplifier (VGA) for downhole communications, which can operate up to an ambient temperature of 230 °C. The proposed VGA is designed using 0.25 μm GaN on SiC high electron mobility transistor (HEMT) technology. Measured results at 230 °C show that the VGA has a peak gain of 27dB at center frequency of 97.5 MHz, and a gain control range of 29.4 dB. At maximum gain, the input P1dB is -11.57 dBm at 230 °C (-3.63 dBm at 25 °C). Input return loss is below 19 dB, and output return loss is below 12 dB across the entire gain control range from 25 °C to 230 °C. The variation with temperature (25 °C to 230 °C) is 1 dB for maximum gain, and 4.7 dB for gain control range. The total power dissipation is 176 mW for maximum gain at 230 °C.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:9694en
dc.identifier.urihttp://hdl.handle.net/10919/74958en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectDownhole communicationsen
dc.subjectHigh temperatureen
dc.subjectVGAen
dc.subjectGaNen
dc.subjectExtreme environmenten
dc.subjectHEMTen
dc.titleDesign of a High Temperature GaN-Based Variable Gain Amplifier for Downhole Communicationsen
dc.typeThesisen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ehteshamuddin_M_T_2017.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format

Collections