Design and Evaluation of an Underactuated Lower Body Exoskeleton
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
An underactuated exoskeleton design for walking assistance is presented and evaluated. The exoskeleton uses one motor per leg and makes use of a pantograph to reduce the overall profile and allow the exoskeleton to closely follow the shape of the user's leg. Support is provided between the ball of the user's foot and their waist by compressing a spring in parallel with the user's leg during Stance Phase. The exoskeleton has a mass of 14.0 kg (30.8 lbs) and was tested up to a supplied spring force of 323.6 N (72.75 lbf) which equates to around 161.8 N (36.38 lbf) of assistive force at the waist. Range of motion tests showed minimal restriction at the knee and ankle, but some restriction of the hip. Human subject experiments using a simple gait detection method based on GRF at walking speeds from 0.45 m/s to 1.12 m/s (1.0 mph to 2.5 mph) were performed and showed an increase in the time between actual heel strike and predicted heel strike of approximately 0.05 seconds to 0.1 seconds. Lastly, calculations are presented examining the effect of exoskeleton assistance on the biological joint moments and optimizing the actuator design to reduce power consumption. The actual performance of the exoskeleton is compared with the calculations based on the joint angles during a typical walking cycle.