VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Autonomous Alignment and Docking Control for a Self-Reconfigurable Modular Mobile Robotic System

TR Number

Date

2024-05-20

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

This paper presents the path planning and motion control of a self-reconfigurable mobile robot system, focusing on module-to-module autonomous docking and alignment tasks. STORM, which stands for Self-configurable and Transformable Omni-Directional Robotic Modules, features a unique mode-switching ability and novel docking mechanism design. This enables the modules that make up STORM to dock with each other and form a variety configurations in or to perform a large array of tasks. The path planning and motion control presented here consists of two parallel schemes. A Lyapunov function-based precision controller is proposed to align the target docking mechanisms in a small range of the target position. Then, an optimization-based path planning algorithm is proposed to help find the fastest path and determine when to switch its locomotion mode in a much larger range. Both numerical simulations and real-world experiments were carried out to validate these proposed controllers.

Description

Keywords

modular self-reconfigurable robotic system, mobile robot stabilization, switching kinematics, trajectory optimization

Citation

Feng, S.; Liu, Y.; Pressgrove, I.; Ben-Tzvi, P. Autonomous Alignment and Docking Control for a Self-Reconfigurable Modular Mobile Robotic System. Robotics 2024, 13, 81.