Meteorological Impacts on Streamflow: Analyzing Anthropogenic Climate Change's Effect on Runoff and Streamflow Magnitudes in Virginia's Chesapeake Bay Watershed

dc.contributor.authorHildebrand, Daniel Stevenen
dc.contributor.committeechairScott, Durelle T.en
dc.contributor.committeememberShortridge, Julieen
dc.contributor.committeememberBurgholzer, Robert Williamen
dc.contributor.departmentBiological Systems Engineeringen
dc.date.accessioned2020-08-06T08:00:48Zen
dc.date.available2020-08-06T08:00:48Zen
dc.date.issued2020-08-05en
dc.description.abstractAnthropogenic climate change will impact Virginia's hydrologic processes in unforeseen ways in the coming decades. This research describes variability in meteorology (temperature and precipitation) and associated hydrologic processes (evapotranspiration) throughout an ensemble of 31 general circulation models (GCMs) used by the Chesapeake Bay Program (CBP). Trends are compared with surface runoff generation patterns for a variety of land uses to investigate climate's effect on runoff generation. Scenarios representing pairings of the tenth, fiftieth, and ninetieth percentiles of precipitation and temperature in the CBP 31-model ensemble were run through VADEQ's VA Hydro hydrologic model to investigate streamflow's response to climate. Temperature changes across the study area were minimized in the tenth percentile scenario (+1.02 to +1.24◦C) and maximized in the ninetieth (+2.20 to +3.02◦C), with evapotranspiration change following this trend (tenth: +2.84 to +3.81%; ninetieth: +6.53 to +10.2%). Precipitation change ranged from -10.9 to -7.30% in the tenth to +22.1 to +28.0% in the ninetieth. Runoff per unit area was largely dependent on land use, with the most extreme changes in runoff often seen in forested and natural land uses (-24% in tenth; +53% in ninetieth) and the least extreme seen in impervious and feeding space land(tenth: -11%; ninetieth: +30%). Both overall runoff per unit area and streamflow changed drastically from the base in the tenth (-20.4% to -25.9% change in median runoff; -19.8% to -27.1% change in median streamflow) and ninetieth (+30.4% to +53.7% change in median runoff; +33.0% to +77.8% change in median streamflow) percentile scenarios.en
dc.description.abstractgeneralHuman-caused climate change will impact Virginia's hydrologic processes in unforeseen ways in the coming decades. This research describes variability in meteorology (temperature and precipitation) and associated hydrologic processes (evapotranspiration) throughout an ensemble of 31 general circulation models (GCMs) used by the Chesapeake Bay Program (CBP). Trends are compared with surface runoff generation patterns for a variety of land uses to investigate climate's effect on runoff generation. Scenarios representing pairings of the tenth, fiftieth, and ninetieth percentiles of precipitation and temperature in the CBP 31-model ensemble were run through VADEQ's VA Hydro hydrologic model to investigate streamflow's response to climate. Temperature changes across the study area were minimized in the tenth percentile scenario (+1.02 to +1.24◦C) and maximized in the ninetieth (+2.20 to +3.02◦C), with evapotranspiration change following this trend (tenth: +2.84 to +3.81%; ninetieth: +6.53 to +10.2%). Precipitation change ranged from -10.9 to -7.30% in the tenth to +22.1 to +28.0% in the ninetieth. Runoff per unit area was largely dependent on land use, with the most extreme changes in runoff often seen in forested and natural land uses (-24% in tenth; +53% in ninetieth) and the least extreme seen in impervious and feeding space land(tenth: -11%; ninetieth: +30%). Both overall runoff per unit area and streamflow changed drastically from the base in the tenth (-20.4% to -25.9% change in median runoff; -19.8% to -27.1% change in median streamflow) and ninetieth (+30.4% to +53.7% change in median runoff; +33.0% to +77.8% change in median streamflow) percentile scenarios.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:27045en
dc.identifier.urihttp://hdl.handle.net/10919/99490en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjecthydrologic modelingen
dc.subjectwater supplyen
dc.subjectclimate modelingen
dc.subjectland use runoffen
dc.subjectstreamflowen
dc.titleMeteorological Impacts on Streamflow: Analyzing Anthropogenic Climate Change's Effect on Runoff and Streamflow Magnitudes in Virginia's Chesapeake Bay Watersheden
dc.typeThesisen
thesis.degree.disciplineBiological Systems Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hildebrand_DS_T_2020.pdf
Size:
5.07 MB
Format:
Adobe Portable Document Format

Collections