Decomposition squared
dc.contributor.author | Sharpe, Eric R. | en |
dc.contributor.author | Zhang, H. | en |
dc.date.accessioned | 2024-10-28T12:05:23Z | en |
dc.date.available | 2024-10-28T12:05:23Z | en |
dc.date.issued | 2024-10-23 | en |
dc.date.updated | 2024-10-27T17:07:42Z | en |
dc.description.abstract | Abstract In this paper, we test and extend a proposal of Gu, Pei, and Zhang for an application of decomposition to three-dimensional theories with one-form symmetries and to quantum K theory. The theories themselves do not decompose, but, OPEs of parallel one-dimensional objects (such as Wilson lines) and dimensional reductions to two dimensions do decompose, sometimes in two independent ways. We apply this to extend conjectures for quantum K theory rings of gerbes (realized by three-dimensional gauge theories with one-form symmetries) via both orbifold partition functions and gauged linear sigma models. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Journal of High Energy Physics. 2024 Oct 23;2024(10):168 | en |
dc.identifier.doi | https://doi.org/10.1007/JHEP10(2024)168 | en |
dc.identifier.uri | https://hdl.handle.net/10919/121405 | en |
dc.language.iso | en | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.holder | The Author(s) | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Decomposition squared | en |
dc.title.serial | Journal of High Energy Physics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |