Effects of ruminal nutrient degradability on volatile fatty acid dynamics, ruminal epithelial gene expression, and post-absorptive system
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This study evaluated degradable nutrient supply effects on VFA concentrations, fluid flux and pool sizes, rumen epithelial metabolic and absorptive genes, and post-absorptive muscle and blood responses. Six ruminally cannulated Holstein heifers (BW=330 ± 11.3 kg) were used in a partially replicated Latin Square experiment with four treatments consisting of beet pulp or timothy hay and barley or corn grain. Periods were18 d with 3 d diet adaptation and 15 d of treatment. During each period, d 10 to 14 was used for in situ nutrient degradation assessment, d 16 to 18 was used for rumen fluid sampling, and d 18 was used for rumen papillae and skeletal muscle biopsies and blood sampling. In situ ruminal starch disappearance rate (barley 7.61 to 10.5 %/h vs corn 7.30 to 8.72%/h; P = 0.05) and extent of fiber disappearance (timothy hay 22.2 to 33.4 % DM vs beet pulp 34.4 to 38.7 % DM P=0.0007) differed significantly among diets. Acetate (P = 0.02) and isovalerate (P = 0.008) molar percentages (% mol) were increased by timothy hay, but propionate (P = 0.06) and valerate (P = 0.10) molar percentages were decreased. Corn increased propionate (P = 0.02) and valerate (P = 0.049) molar percentage, but decreased butyrate (P = 0.04) molar proportion. Fluid volume and fluid passage rate, and individual VFA pool sizes were not influenced by diet (P > 0.05). Four epithelial genes, two metabolic and two absorptive, had increased expression on timothy hay diets (P < 0.15). Blood acetate concentration was influenced by treatment (P = 0.067) but no other blood metabolites were. Skeletal muscle metabolic rate was significantly increased on corn diets (P = 0.023). The results of this study provide a whole-system snapshot of how the rumen environment changes on diets differing in nutrient degradability and how the post-absorptive system adapts in response.