Experimentally engineering the edge termination of graphene nanoribbons

dc.contributor.authorZhang, X.en
dc.contributor.authorYazyev, O. V.en
dc.contributor.authorFeng, J.en
dc.contributor.authorXie, L.en
dc.contributor.authorTao, C.en
dc.contributor.authorChen, Y. C.en
dc.contributor.authorJiao, L.en
dc.contributor.authorPedramrazi, Z.en
dc.contributor.authorZettl, A.en
dc.contributor.authorLouie, S. G.en
dc.contributor.authorDai, H.en
dc.contributor.authorCrommie, M. F.en
dc.contributor.departmentPhysicsen
dc.coverage.spatialUnited Statesen
dc.date.accessioned2017-02-26T22:07:35Zen
dc.date.available2017-02-26T22:07:35Zen
dc.date.issued2013-01-22en
dc.description.abstractThe edges of graphene nanoribbons (GNRs) have attracted much interest due to their potentially strong influence on GNR electronic and magnetic properties. Here we report the ability to engineer the microscopic edge termination of high-quality GNRs via hydrogen plasma etching. Using a combination of high-resolution scanning tunneling microscopy and first-principles calculations, we have determined the exact atomic structure of plasma-etched GNR edges and established the chemical nature of terminating functional groups for zigzag, armchair, and chiral edge orientations. We find that the edges of hydrogen-plasma-etched GNRs are generally flat, free of structural reconstructions, and terminated by hydrogen atoms with no rehybridization of the outermost carbon edge atoms. Both zigzag and chiral edges show the presence of edge states.en
dc.description.versionPublished versionen
dc.format.extent198 - 202 page(s)en
dc.identifier.doihttps://doi.org/10.1021/nn303730ven
dc.identifier.eissn1936-086Xen
dc.identifier.issue1en
dc.identifier.urihttp://hdl.handle.net/10919/75175en
dc.identifier.volume7en
dc.language.isoenen
dc.relation.urihttp://www.ncbi.nlm.nih.gov/pubmed/23194280en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectComputer Simulationen
dc.subjectCrystallizationen
dc.subjectGraphiteen
dc.subjectMacromolecular Substancesen
dc.subjectMaterials Testingen
dc.subjectModels, Chemicalen
dc.subjectModels, Molecularen
dc.subjectMolecular Conformationen
dc.subjectNanostructuresen
dc.subjectParticle Sizeen
dc.subjectSurface Propertiesen
dc.titleExperimentally engineering the edge termination of graphene nanoribbonsen
dc.title.serialACS Nanoen
dc.typeArticleen
dc.type.otherResearch Support, Non-U.S. Gov'ten
dc.type.otherResearch Support, U.S. Gov't, Non-P.H.S.en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1205.3516v2.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: