Processing and Properties of Particulate Reinforced Carbon Matrix Composites


TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Carbonization of biomass is a type of pyrolysis that allows for the formation of byproducts that have applications in many other industries [1]. In the field of materials science concerned with environmental impact intersecting with desirable material properties and performance, the process of carbonization in particular with commonplace biomass such as food waste is of great interest. In this thesis, pistachio shell was used as the organic biomass of choice for carbonization, and reinforcement was provided by titanium powder. These two materials were milled together at two different compositions and milling times. Experimental conditions consisted of replicates of three bulk samples made from uniaxially pressed powder mixtures heat treated from 800 °C up to 1200 °C in increments of 100 °C. Heat treatment occurred in a tube furnace with a heating rate of 5 °C/min up to the heat treatment temperature, holding the temperature for 1 hour, then ramping back down to room temperature, all in an inert atmosphere. XRD was performed on heat treated samples before polishing, while optical microscopy and SEM were performed after mounting and polishing. TGA was performed on the milled powders, while hardness was performed on the heat treated bulk samples after mounting and polishing. Results obtained suggested that increasing heat treatment temperature and milling time decreased carbon matrix porosity. In addition, greater amounts of titanium seemed to result in increased porosity. However, at increased temperature, more surface cracking was observed, leading to the conclusion that an excessively high temperature is detrimental to mechanical properties. Finally, rutile TiO2 was formed as a result of the heat treatment process. In considering environmental impact, cost, and mechanical properties, a balance must be maintained between higher temperature processing, duration, milling time, and porosity present due to these factors. Future work includes further investigations into processing parameters and characterization such as XPS and abrasion testing.



Carbon, Carbonization, Nanocarbon, Composites, Particle Reinforced Composites, Titanium, Biomass, Brittle Matrix Composites, Carbon Matrix Composites, Brake Pads, Pistachio Shell