Improved pig behavior analysis by optimizing window sizes for individual behaviors on acceleration and angular velocity data
dc.contributor.author | Alghamdi, Saleh | en |
dc.contributor.author | Zhao, Zhuqing | en |
dc.contributor.author | Ha, Dong S. | en |
dc.contributor.author | Morota, Gota | en |
dc.contributor.author | Ha, Sook S. | en |
dc.date.accessioned | 2023-02-20T16:15:10Z | en |
dc.date.available | 2023-02-20T16:15:10Z | en |
dc.date.issued | 2022-11-01 | en |
dc.date.updated | 2023-02-19T15:52:12Z | en |
dc.description.abstract | This paper presents the application of machine learning algorithms to identify pigs' behaviors from data collected using the wireless sensor nodes mounted on pigs. The sensor node attached to a pig's back senses the acceleration and angular velocity in three axes, and the sensed data are transmitted to a host computer wirelessly. Two video cameras, one attached to the ceiling of the pigpen and the other one to a fence, provided ground truth for data annotations. The data were collected from pigs for 131 h over 2 mo. As the typical behavior period depends on the behavior type, we segmented the acceleration data with different window sizes (WS) and step sizes (SS), and tested how the classification performance of different activities varied with different WS and SS. After exploring the possible combinations, we selected the optimum WS and SS. To compare performance, we used five machine learning algorithms, specifically support vector machine, k-nearest neighbors, decision trees, naive Bayes, and random forest (RF). Among the five algorithms, RF achieved the highest F1 score for four major behaviors consisting of 92.36% in total. The F1 scores of the algorithm were 0.98 for "eating,"0.99 for "lying,"0.93 for "walking,"and 0.91 for "standing"behaviors. The optimal WS was 7 s for "eating"and "lying,"and 3 s for "walking"and "standing."The proposed work demonstrates that, based on the length of behavior, the adaptive window and step sizes increase the classification performance. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1093/jas/skac293 | en |
dc.identifier.eissn | 1525-3163 | en |
dc.identifier.issn | 0021-8812 | en |
dc.identifier.issue | 11 | en |
dc.identifier.orcid | Morota, Gota [0000-0002-3567-6911] | en |
dc.identifier.other | 6691203 (PII) | en |
dc.identifier.pmid | 36056754 | en |
dc.identifier.uri | http://hdl.handle.net/10919/113874 | en |
dc.identifier.volume | 100 | en |
dc.language.iso | en | en |
dc.publisher | Oxford University Press | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/36056754 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | data segmentation | en |
dc.subject | labeling | en |
dc.subject | pig behavior classification | en |
dc.subject | pig behavior monitoring | en |
dc.subject | window size | en |
dc.subject | wireless sensor node | en |
dc.subject | Behavioral and Social Science | en |
dc.subject.mesh | Animals | en |
dc.subject.mesh | Swine | en |
dc.subject.mesh | Bayes Theorem | en |
dc.subject.mesh | Algorithms | en |
dc.subject.mesh | Acceleration | en |
dc.subject.mesh | Machine Learning | en |
dc.subject.mesh | Support Vector Machine | en |
dc.title | Improved pig behavior analysis by optimizing window sizes for individual behaviors on acceleration and angular velocity data | en |
dc.title.serial | Journal of Animal Science | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal Article | en |
dcterms.dateAccepted | 2022-09-02 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Agriculture & Life Sciences | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Agriculture & Life Sciences/CALS T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Improved pig behavior analysis by optimizing window sizes for individual behaviors on acceleration and angular velocity data.pdf
- Size:
- 1.25 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version