Architectural Models for Lower Pennsylvanian Strata in Dickenson/Wise County, Southwest Virginia: A Reservior Case Study

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The lower Pennsylvanian, coal-bearing, siliciclastic strata in Dickenson/Wise counties of southwest Virginia were deposited in continental to marginal marine environments influenced by high-amplitude relative sea level fluctuations. Coal-bearing siliciclastics of the eastern facies belt are fluvio-deltaic in origin, with sediment derived from the erosion of low-grade metamorphic and Grenvillian-Avalonian terranes of the Alleghanian orogen to the southeast. Elongate NNE trending quartzarenite belts in the northwestern region of the basin are braided-fluvial deposits and were sourced by the cratonic Archean Superior Province to the north. This orthogonal relationship between the southeastern coal-bearing siliciclastics and the northwestern quartzarenites reflect a trunk-tributary drainage system operating during the lower Pennsylvanian in the central Appalachian basin.

Analysis of core, gamma ray and density logs, and six cross-sections within an approximately 20 km² study area reveals a hierarchy of bounding discontinuities and architectural elements. Discontinuities are both erosional (unconformable) and depositional (condensed) and are 3rd-order (~ 2.5 Ma) and 4th-order (~ 400 k.y.) in origin. Architectural elements are bound by 4th-order discontinuities and consist of upward-fining lowstand and transgressive incised valley fill, alluvial, and estuarine deposits, and upward-coarsening highstand deltaic deposits and represent 4th-order sequences. Lowstand and transgressive deposits are separated from the highstand deposits by marine flooding zones (condensed sections). 4th-order sequences are stacked into composite 3rd-order sequences. Sequence development can be attributed to 4th-order Milankovitch orbital eccentricity cycles superimposed on a lower-frequency eccentricity cycle.

Extensive coals occur in both transgressive and highstand systems tracts. Coals within the transgressive systems tract are associated with 4th-order flooding surfaces, while coals within the highstand systems tract occur within high-frequency deltaic autocycles. Therefore, coals formation in the central Appalachian basin can be attributed to be of both allocyclic (glacio-eustacy) and autocyclic (deltaic processes) mechanisms.



Lower Pennsylvanian, central Appalachian basin, sequence stratigraphy, coal, Breathitt Group