Analyses of Two Aspects of Study Design for Bioassessment With Benthic Macroinvertebrates: Single Versus Multiple Habitat Sampling and Taxonomic Identification Level

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Bioassessment is the concept of evaluating the ecological condition of habitats by surveying the resident assemblages of living organisms. Conducting bioassessment with benthic macroinvertebrates is still evolving and continues to be refined. There are strongly divided opinions about study design, sampling methods, laboratory analyses, and data analysis. Two issues that are currently being debated about study design for bioassessment in streams were examined here: 1) what habitats within streams should be sampled; 2) and is it necessary to identify organisms to the species level? The influence of habitat sampling design and level of taxonomic identification on the interpretation of ecological conditions of ten small streams in western Virginia was examined. Cattle watering and grazing heavily affected five of these streams (impaired sites). The other five streams, with no recent cattle activity or other impact by man, were considered to be reference sites because they were minimally impaired and represented best attainable conditions. Inferential and non-inferential statistical analyses concluded that multiple habitat sampling design was more effective than a single habitat design (riffle only) at distinguishing impaired conditions, regardless of taxonomic level. It appeared that sampling design (riffle habitat versus multiple habitats) is more important than taxonomic identification level for distinguishing reference and impaired ecological conditions in this bioassessment study. All levels of taxonomic resolution, which were studied, showed that the macroinvertebrate assemblages at the reference and impaired sites were very different and the assemblages at the impaired sites were adversely affected by perturbation. This study supported the sampling of multiple habitats and identification to the family level as a design for best determining the ecological condition of streams in bioassessment.



bioassessment, benthic macroinvertebrates, taxonomic identification level, habitat sampling design