Quantitative Biophysical Metrics for Rapid Evaluation of Ovarian Cancer Metastatic Potential

dc.contributor.authorMukherjee, Apratimen
dc.contributor.authorZhang, Haonanen
dc.contributor.authorLadner, Katherineen
dc.contributor.authorBrown, Meganen
dc.contributor.authorUrbanski, Jacoben
dc.contributor.authorGrieco, Joseph P.en
dc.contributor.authorKapania, Rakesh K.en
dc.contributor.authorLou, Emilen
dc.contributor.authorBehkam, Baharehen
dc.contributor.authorSchmelz, Eva M.en
dc.contributor.authorNain, Amrinder S.en
dc.date.accessioned2023-01-25T18:00:25Zen
dc.date.available2023-01-25T18:00:25Zen
dc.date.issued2022-05-15en
dc.date.updated2023-01-25T17:06:35Zen
dc.description.abstractOvarian cancer is routinely diagnosed long after the disease has metastasized through the fibrous sub-mesothelium. Despite extensive research in the field linking ovarian cancer progression to increasingly poor prognosis, there are currently no validated cellular markers or hallmarks of ovarian cancer that can predict metastatic potential. To discern disease progression across a syngeneic mouse ovarian cancer progression model, here, we fabricated extracellular-matrix mimicking suspended fiber networks: crosshatches of mismatch diameters for studying protrusion dynamics, aligned same diameter networks of varying inter-fiber spacing for studying migration, and aligned nanonets for measuring cell forces. We found that migration correlated with disease, while force-disease biphasic relationship exhibited f-actin stress-fiber network dependence. However, unique to suspended fibers, <i>coiling</i> occurring at tips of protrusions and not the length or breadth of protrusions displayed strongest correlation with metastatic potential. To confirm that our findings were more broadly applicable beyond the mouse model, we repeated our studies in human ovarian cancer cell lines and found that the biophysical trends were consistent with our mouse model results. Altogether, we report complementary high throughput and high content biophysical metrics capable of identifying ovarian cancer metastatic potential on time scale of hours.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1091/mbc.e21-08-0419en
dc.identifier.eissn1939-4586en
dc.identifier.issn1059-1524en
dc.identifier.issue6en
dc.identifier.orcidKapania, Rakesh [0000-0001-7294-4703]en
dc.identifier.orcidBehkam, Bahareh [0000-0002-2174-2914]en
dc.identifier.orcidNain, Amrinder [0000-0002-9757-2341]en
dc.identifier.orcidSchmelz, Eva [0000-0002-3374-5266]en
dc.identifier.pmid34985924en
dc.identifier.urihttp://hdl.handle.net/10919/113424en
dc.identifier.volume33en
dc.language.isoenen
dc.publisherAmerican Society for Cell Biologyen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000800657800011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en
dc.subjectScience & Technologyen
dc.subjectNANONET FORCE MICROSCOPYen
dc.subjectHUMAN MESOTHELIAL CELLSen
dc.subjectEXTRACELLULAR-MATRIXen
dc.subjectTUMOR-METASTASISen
dc.subjectFOCAL ADHESIONSen
dc.subjectMYOSIN-IIen
dc.subjectIN-VITROen
dc.subjectMIGRATIONen
dc.subjectPROGRESSIONen
dc.subjectSINGLEen
dc.subjectRare Diseasesen
dc.subjectOvarian Canceren
dc.subjectCanceren
dc.subject.meshCell Line, Tumoren
dc.subject.meshExtracellular Matrixen
dc.subject.meshAnimalsen
dc.subject.meshHumansen
dc.subject.meshMiceen
dc.subject.meshOvarian Neoplasmsen
dc.subject.meshActinsen
dc.subject.meshCell Movementen
dc.subject.meshBenchmarkingen
dc.subject.meshFemaleen
dc.titleQuantitative Biophysical Metrics for Rapid Evaluation of Ovarian Cancer Metastatic Potentialen
dc.title.serialMolecular Biology of the Cellen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dcterms.dateAccepted2021-11-29en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Agriculture & Life Sciencesen
pubs.organisational-group/Virginia Tech/Agriculture & Life Sciences/Human Nutrition, Foods, & Exerciseen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Aerospace and Ocean Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Mechanical Engineeringen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Agriculture & Life Sciences/CALS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quantitative_biophysical.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format
Description:
Published version