Understanding Fixed Object Crashes with SHRP2 Naturalistic Driving Study Data

Files

TR Number

Date

2018-08-30

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Fixed-object crashes have long time been considered as major roadway safety concerns. While previous relevant studies tended to address such crashes in the context of roadway departures, and heavily relied on police-reported accidents data, this study integrated the SHRP2 NDS and RID data for analyses, which fully depicted the prior to, during, and after crash scenarios. A total of 1,639 crash, near-crash events, and 1,050 baseline events were acquired. Three analysis methods: logistic regression, support vector machine (SVM) and artificial neural network (ANN) were employed for two responses: crash occurrence and severity level. Logistic regression analyses identified 16 and 10 significant variables with significance levels of 0.1, relevant to driver, roadway, environment, etc. for two responses respectively. The logistic regression analyses led to a series of findings regarding the effects of explanatory variables on fixed-object event occurrence and associated severity level. SVM classifiers and ANN models were also constructed to predict these two responses. Sensitivity analyses were performed for SVM classifiers to infer the contributing effects of input variables. All three methods obtained satisfactory prediction performance, that was around 88% for fixed-object event occurrence and 75% for event severity level, which indicated the effectiveness of NDS event data on depicting crash scenarios and roadway safety analyses.

Description

Keywords

Fixed-object crash, Naturalistic driving study, Logistic regression analysis, Support vector machine, Artificial neural network

Citation

Collections