Theory and applications of chirality in microstrip antennas
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The aim of this study is to analyze radiation from surface currents lying on an interface between a grounded, planar, lossless, isotropic, chiral slab and a simple lossless dielectric half-space. An eigenvalue-eigenfunction approach, specifically the Ohm-Raleigh method, is employed to obtain a modal expression for the full-wave Green's function. By using asymptotic techniques, the far-field electric field is found for an elemental point dipole source. The theory is directly applicable to radiation from a printed circuit antenna having a chiral substrate. Current research efforts show that under certain circumstances, the introduction of chiral materials as substrates of microstrip antennas offers novel radiation properties over achiral microstrip antennas. A number of representative antennas are analyzed with respect to radiation pattern, main beam position, and directivity.