Vertically graded Fe-Ni alloys with low damping and a sizable spin-orbit torque

dc.contributor.authorMaizel, Rachel E.en
dc.contributor.authorWu, Shuangen
dc.contributor.authorBalakrishnan, Purnima P.en
dc.contributor.authorGrutter, Alexander J.en
dc.contributor.authorKinane, Christy J.en
dc.contributor.authorCaruana, Andrew J.en
dc.contributor.authorNakarmi, Prabandhaen
dc.contributor.authorNepal, Bhuwanen
dc.contributor.authorSmith, David A.en
dc.contributor.authorLim, Youngminen
dc.contributor.authorJones, Julia L.en
dc.contributor.authorThomas, Wyatt C.en
dc.contributor.authorZhao, Jingen
dc.contributor.authorMichel, F. Marcen
dc.contributor.authorMewes, Timen
dc.contributor.authorEmori, Satoruen
dc.date.accessioned2025-01-03T13:40:22Zen
dc.date.available2025-01-03T13:40:22Zen
dc.date.issued2024-10-21en
dc.description.abstractEnergy-efficient spintronic devices require a large spin-orbit torque (SOT) and low damping to excite magnetic precession. In conventional devices with heavy-metal/ferromagnet bilayers, reducing the ferromagnet thickness to approximately 1 nm enhances the SOT but dramatically increases damping. Here, we investigate an alternative approach based on a 10-nm-thick single-layer ferromagnet to attain both low damping and a sizable SOT. Instead of relying on a single interface, we continuously break the bulk inversion symmetry with a vertical compositional gradient of two ferromagnetic elements: Fe with low intrinsic damping and Ni with sizable spin-orbit coupling. We find low effective damping parameters of αeff<5×10-3 in the Fe-Ni alloy films, despite the steep compositional gradients. Moreover, we reveal a sizable antidamping SOT efficiency of |θAD|≈0.05, even without an intentional compositional gradient. Through depth-resolved x-ray diffraction, we identify a lattice strain gradient as crucial symmetry breaking that underpins the SOT. Our findings provide fresh insights into damping and SOTs in single-layer ferromagnets for power-efficient spintronic devices.en
dc.description.versionAccepted versionen
dc.format.extent17 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 044052 (Article number)en
dc.identifier.doihttps://doi.org/10.1103/PhysRevApplied.22.044052en
dc.identifier.eissn2331-7019en
dc.identifier.issn2331-7019en
dc.identifier.issue4en
dc.identifier.orcidMichel, Frederick [0000-0003-2817-980X]en
dc.identifier.urihttps://hdl.handle.net/10919/123888en
dc.identifier.volume22en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleVertically graded Fe-Ni alloys with low damping and a sizable spin-orbit torqueen
dc.title.serialPhysical Review Applieden
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2024-09-03en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Geosciencesen
pubs.organisational-groupVirginia Tech/Science/Physicsen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fe_Ni_Final_arXiv (2).pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: