Vertically graded Fe-Ni alloys with low damping and a sizable spin-orbit torque
dc.contributor.author | Maizel, Rachel E. | en |
dc.contributor.author | Wu, Shuang | en |
dc.contributor.author | Balakrishnan, Purnima P. | en |
dc.contributor.author | Grutter, Alexander J. | en |
dc.contributor.author | Kinane, Christy J. | en |
dc.contributor.author | Caruana, Andrew J. | en |
dc.contributor.author | Nakarmi, Prabandha | en |
dc.contributor.author | Nepal, Bhuwan | en |
dc.contributor.author | Smith, David A. | en |
dc.contributor.author | Lim, Youngmin | en |
dc.contributor.author | Jones, Julia L. | en |
dc.contributor.author | Thomas, Wyatt C. | en |
dc.contributor.author | Zhao, Jing | en |
dc.contributor.author | Michel, F. Marc | en |
dc.contributor.author | Mewes, Tim | en |
dc.contributor.author | Emori, Satoru | en |
dc.date.accessioned | 2025-01-03T13:40:22Z | en |
dc.date.available | 2025-01-03T13:40:22Z | en |
dc.date.issued | 2024-10-21 | en |
dc.description.abstract | Energy-efficient spintronic devices require a large spin-orbit torque (SOT) and low damping to excite magnetic precession. In conventional devices with heavy-metal/ferromagnet bilayers, reducing the ferromagnet thickness to approximately 1 nm enhances the SOT but dramatically increases damping. Here, we investigate an alternative approach based on a 10-nm-thick single-layer ferromagnet to attain both low damping and a sizable SOT. Instead of relying on a single interface, we continuously break the bulk inversion symmetry with a vertical compositional gradient of two ferromagnetic elements: Fe with low intrinsic damping and Ni with sizable spin-orbit coupling. We find low effective damping parameters of αeff<5×10-3 in the Fe-Ni alloy films, despite the steep compositional gradients. Moreover, we reveal a sizable antidamping SOT efficiency of |θAD|≈0.05, even without an intentional compositional gradient. Through depth-resolved x-ray diffraction, we identify a lattice strain gradient as crucial symmetry breaking that underpins the SOT. Our findings provide fresh insights into damping and SOTs in single-layer ferromagnets for power-efficient spintronic devices. | en |
dc.description.version | Accepted version | en |
dc.format.extent | 17 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | ARTN 044052 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1103/PhysRevApplied.22.044052 | en |
dc.identifier.eissn | 2331-7019 | en |
dc.identifier.issn | 2331-7019 | en |
dc.identifier.issue | 4 | en |
dc.identifier.orcid | Michel, Frederick [0000-0003-2817-980X] | en |
dc.identifier.uri | https://hdl.handle.net/10919/123888 | en |
dc.identifier.volume | 22 | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Vertically graded Fe-Ni alloys with low damping and a sizable spin-orbit torque | en |
dc.title.serial | Physical Review Applied | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
dcterms.dateAccepted | 2024-09-03 | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Science | en |
pubs.organisational-group | Virginia Tech/Science/Geosciences | en |
pubs.organisational-group | Virginia Tech/Science/Physics | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Science/COS T&R Faculty | en |