Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity
dc.contributor.author | Hossan, Shanewaz | en |
dc.contributor.author | Hossain, Saddam | en |
dc.contributor.author | Islam, Mohammad Rafiqul | en |
dc.contributor.author | Kabir, Mir Himayet | en |
dc.contributor.author | Ali, Sobur | en |
dc.contributor.author | Islam, Md Shafiqul | en |
dc.contributor.author | Imran, Khan Mohammad | en |
dc.contributor.author | Moniruzzaman, M. | en |
dc.contributor.author | Mou, Taslin Jahan | en |
dc.contributor.author | Parvez, Anowar Khasru | en |
dc.contributor.author | Mahmud, Zahid Hayat | en |
dc.date.accessioned | 2020-08-21T15:06:25Z | en |
dc.date.available | 2020-08-21T15:06:25Z | en |
dc.date.issued | 2020-08-19 | en |
dc.date.updated | 2020-08-21T13:50:43Z | en |
dc.description.abstract | Chromium (Cr) (VI) has long been known as an environmental hazard that can be reduced from aqueous solutions through bioremediation by living cells. In this study, we investigated the efficiency of reduction and biosorption of Cr(VI) by chromate resistant bacteria isolated from tannery effluent. From 28 screened Cr(VI) resistant isolates, selected bacterial strain SH-1 was identified as <i>Klebsiella</i> sp. via 16S rRNA sequencing. In Luria–Bertani broth, the relative reduction level of Cr(VI) was 95%, but in tannery effluent, it was 63.08% after 72 h of incubation. The cell-free extract of SH-1 showed a 72.2% reduction of Cr(VI), which indicated a higher activity of Cr(VI) reducing enzyme than the control. Live and dead biomass of SH-1 adsorbed 51.25 mg and 29.03 mg Cr(VI) per gram of dry weight, respectively. Two adsorption isotherm models—Langmuir and Freundlich—were used for the illustration of Cr(VI) biosorption using SH-1 live biomass. Scanning electron microscopy (SEM) analysis showed an increased cell size of the treated biomass when compared to the controlled biomass, which supports the adsorption of reduced Cr on the biomass cell surface. Fourier-transform infrared analysis indicated that Cr(VI) had an effect on bacterial biomass, including quantitative and structural modifications. Moreover, the chickpea seed germination study showed beneficial environmental effects that suggest possible application of the isolate for the bioremediation of toxic Cr(VI). | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Hossan, S.; Hossain, S.; Islam, M.R.; Kabir, M.H.; Ali, S.; Islam, M.S.; Imran, K.M.; Moniruzzaman, M.; Mou, T.J.; Parvez, A.K.; Mahmud, Z.H. Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity. Int. J. Environ. Res. Public Health 2020, 17, 6013. | en |
dc.identifier.doi | https://doi.org/10.3390/ijerph17176013 | en |
dc.identifier.uri | http://hdl.handle.net/10919/99827 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | hexavalent chromium | en |
dc.subject | chromium resistant bacteria | en |
dc.subject | biosorption | en |
dc.subject | isotherm | en |
dc.subject | phytotoxicity | en |
dc.title | Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity | en |
dc.title.serial | International Journal of Environmental Research and Public Health | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.dcmitype | StillImage | en |