On Efficient Computer Vision Applications for Neural Networks
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Since approximately the dawn of the new millennium, neural networks and other machine learning algorithms have become increasingly capable of adeptly performing difficult, dull, and dangerous work conventionally carried out by humans in times of old. As these algorithms become steadily more commonplace in everyday consumer and industry applications, the consideration of how they may be implemented on constrained hardware systems such as smartphones and Internet-of-Things (IoT) peripheral devices in a time- and power- efficient manner while also understanding the scenarios in which they fail is of increasing importance. This work investigates implementations of convolutional neural networks specifically in the context of image inference tasks. Three areas are analyzed: (1) a time- and power-efficient face recognition framework, (2) the development of a COVID-19-related mask classification system suitable for deployment on low-cost, low-power devices, and (3) an investigation into the implementation of spiking neural networks on mobile hardware and their conversion from traditional neural network architectures.