Field Evaluation of Doppler LIDAR Sensors for Early Assessment of Track Instability
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The primary purpose of this study is to evaluate the use of Doppler Lidar sensors for assessing track weakening that would indicate early stages of track instability. Such track weakening could lead to gage widening or track buckling due to rail thermal expansion. A series of tests are performed at the Transportation Technology Center's High Tonnage Loop, where two sections of track are "doctored" to have weaker lateral strength, one on a tangent and another one in a curve. Multiple tests are performed at speeds ranging from 10 – 40 mph, during which the lateral and vertical deflections of the rail are measured under the weight of the passing wheels of a heavily-loaded gondola. The track weakness is created by removing the rail spikes from eight consecutive ties. The measurements from the soft sections are compared with a track section on a tangent that is determined to have nominally sufficient ("good") stiffness.
The measurement system consists of four Doppler Lidar units, two oriented toward the rail gage face to measure lateral rail movement, and two directed to the top of the rail to measure vertical rail movement. The combination of the vertical and lateral measurements is used as an indicator of a lack of rail stability if larger-than-normal movement of the rail is detected in either direction.
The data collected is analyzed through various methods designed to differentiate sections of track including Gaussian Mixture Model sorting algorithms, inspection via Short Time Fourier Transforms, Discrete Wavelet Transforms, and manual inspection. None of the methods can be done automatically; they each require a different amount of setup and pre-processing before the raw data can be made suitable for the analysis offered by each. The pre-processing can account for dropped data and can be used to identify some false positives such as switches or lubricators.
The test results indicate that the system provides a distinctly different measurement in the sections that are doctored to have less track stability than the section with nominally sufficient stiffness. The detection of the loose track in the tangent sections, however, proves to be less reliable. For those, a mostly ad hoc approach is necessary to match the measured data with video images to pinpoint the exact location of the measurements. It is not clear to what extent such approaches would be feasible in practice.
Further evaluations of the test data may be used to shed more light on practical analysis methods—possibly wavelets—that are more automated and less ad hoc. They can also provide alternative system setups or designs of experiments for future tests at TTC or on revenue service tracks.