Self-Assembly of Pullulan Abietate on Cellulose Surfaces

dc.contributor.authorGradwell, Sheila Elizabethen
dc.contributor.committeechairEsker, Alan R.en
dc.contributor.committeememberCrawford, T. Danielen
dc.contributor.committeememberTanko, James M.en
dc.contributor.departmentChemistryen
dc.date.accessioned2011-08-06T16:06:15Zen
dc.date.adate2004-09-02en
dc.date.available2011-08-06T16:06:15Zen
dc.date.issued1999-03-31en
dc.date.rdate2007-09-02en
dc.date.sdate2004-09-01en
dc.description.abstractWood is a complex biocomposite that exhibits a high work of fracture, making it an ideal model for multiphase man-made materials. Typically, man-made composites demonstrate interfacial fracture at failure due to abrupt transitions between neighboring phases. This phenomenon does not occur in wood because gradual phase transitions exist between regions of cellulose, hemicellulose, and lignin and therefore adhesion between adjacent phases is increased. The formation of interphases occurs as a consequence of the self-assembly process which governs the formation of wood. If this process was understood more thoroughly, perhaps tougher man-made, biobased composites could be prepared. To study self-assembly phenomena in wood, a system composed of a model copolymer (pullulan abietate, DS=0.027) representing the lignin-carbohydrate complex (LCC) and a model surface for cellulose fibers was used. The self-assembly of the polysaccharide pullulan abietate (DS=0.027) onto a regenerated cellulose surface prepared using the Langmuir-Blodgett (LB) technique was studied via surface plasmon resonance (SPR). Rapid, spontaneous, and desorption-resistant cellulose surface modification resulted when exposed to the model LCC. Adsorption was quantified using the de Feijter equation revealing that between 9-10 anhydroglucose units (AGUs) adsorb per nm&178; of cellulose surface area when cellulose is exposed to pullulan abietate (DS=0.027) compared to the adsorption of 6.6 AGUs per nm&178; of cellulose surface area when cellulose is exposed to unsubstituted pullulan.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.otheretd-09012004-030228en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-09012004-030228en
dc.identifier.urihttp://hdl.handle.net/10919/10095en
dc.publisherVirginia Techen
dc.relation.haspartThesis.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectcellulose surface modificationen
dc.subjectpullulan abietateen
dc.subjectLangmuir-Blodgett thin filmsen
dc.subjectadsorptionen
dc.subjectself-assemblyen
dc.subjectSPRen
dc.subjectsurface plasmon resonanceen
dc.titleSelf-Assembly of Pullulan Abietate on Cellulose Surfacesen
dc.typeThesisen
thesis.degree.disciplineChemistryen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format

Collections