Creating Landscape-Scale Site Index Maps for the Southeastern US Is Possible with Airborne LiDAR and Landsat Imagery
dc.contributor.author | Gopalakrishnan, Ranjith | en |
dc.contributor.author | Kauffman, Jobriath S. | en |
dc.contributor.author | Fagan, Matthew E. | en |
dc.contributor.author | Coulston, John W. | en |
dc.contributor.author | Thomas, Valerie A. | en |
dc.contributor.author | Wynne, Randolph H. | en |
dc.contributor.author | Fox, Thomas R. | en |
dc.contributor.author | Quirino, Valquiria F. | en |
dc.contributor.department | Forest Resources and Environmental Conservation | en |
dc.date.accessioned | 2019-03-18T12:28:06Z | en |
dc.date.available | 2019-03-18T12:28:06Z | en |
dc.date.issued | 2019-03-06 | en |
dc.date.updated | 2019-03-15T13:54:40Z | en |
dc.description.abstract | Sustainable forest management is hugely dependent on high-quality estimates of forest site productivity, but it is challenging to generate productivity maps over large areas. We present a method for generating site index (a measure of such forest productivity) maps for plantation loblolly pine (<i>Pinus taeda</i> L.) forests over large areas in the southeastern United States by combining airborne laser scanning (ALS) data from disparate acquisitions and Landsat-based estimates of forest age. For predicting canopy heights, a linear regression model was developed using ALS data and field measurements from the Forest Inventory and Analysis (FIA) program of the US Forest Service (<i>n</i> = 211 plots). The model was strong (<i>R</i><sup>2</sup> = 0.84, RMSE = 1.85 m), and applicable over a large area (~208,000 sq. km). To estimate the site index, we combined the ALS estimated heights with Landsat-derived maps of stand age and planted pine area. The estimated bias was low (−0.28 m) and the RMSE (3.8 m, relative RMSE: 19.7%, base age 25 years) was consistent with other similar approaches. Due to Landsat-related constraints, our methodology is valid only for relatively young pine plantations established after 1984. We generated 30 m resolution site index maps over a large area (~832 sq. km). The site index distribution had a median value of 19.4 m, the 5th percentile value of 13.0 m and the 95th percentile value of 23.3 m. Further, using a watershed level analysis, we ranked these regions by their estimated productivity. These results demonstrate the potential and value of remote sensing based large-area site index maps. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Gopalakrishnan, R.; Kauffman, J.S.; Fagan, M.E.; Coulston, J.W.; Thomas, V.A.; Wynne, R.H.; Fox, T.R.; Quirino, V.F. Creating Landscape-Scale Site Index Maps for the Southeastern US Is Possible with Airborne LiDAR and Landsat Imagery. Forests 2019, 10, 234. | en |
dc.identifier.doi | https://doi.org/10.3390/f10030234 | en |
dc.identifier.uri | http://hdl.handle.net/10919/88468 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | forestry | en |
dc.subject | forest site productivity | en |
dc.subject | site index | en |
dc.subject | Landsat | en |
dc.subject | airborne laser scanning | en |
dc.subject | forest productivity mapping | en |
dc.subject | FIA | en |
dc.title | Creating Landscape-Scale Site Index Maps for the Southeastern US Is Possible with Airborne LiDAR and Landsat Imagery | en |
dc.title.serial | Forests | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |