VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Near-Optimal Control of Atomic Force Microscope For Non-contact Mode Applications

TR Number

Date

2022-06-13

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

A compact model representing the dynamics between piezoelectric voltage inputs and cantilever probe positioning, including nonlinear surface interaction forces, for atomic force microscopes (AFM) is considered. By considering a relatively large cantilever stiffness, singular perturbation methods reduce complexity in the model and allows for faster responses to Van der Waals interaction forces experienced by the cantilever's tip and measurement sample. In this study, we outline a nonlinear near-optimal feedback control approach for non-contact mode imaging designed to move the cantilever tip laterally about a desired trajectory and maintain the tip vertically about the equilibrium point of the attraction and repulsion forces. We also consider the universal instance when the tip-sample interaction force is unknown, and we construct cascaded high-gain observers to estimate these forces and multiple AFM dynamics for the purpose of output feedback control. Our proposed output feedback controller is used to accomplish the outlined control objective with only the piezotube position available for state feedback.

Description

Keywords

atomic force microscope, optimal control, output feedback, singular perturbation

Citation

Collections