Maximizing Equitable Reach and Accessibility of ETDs
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This poster addresses accessibility issues of electronic theses and dissertations (ETDs) in digital libraries (DLs). ETDs are available primarily as PDF files, which present barriers to equitable access, especially for users with visual impairments, cognitive or learning disabilities, or for anyone needing more efficient and effective ways of finding relevant information within these long documents. We propose using AI techniques, including natural language processing (NLP), computer vision, and text analysis, to convert PDFs into machine-readable HTML documents with semantic tags and structure, extracting figures and tables, and generating summaries and keywords. Our goal is to increase the accessibility of ETDs and to make this important scholarship available to a wider audience.