On Nonassociative Division Rings and Projective Planes
dc.contributor.author | Landquist, Eric Jon | en |
dc.contributor.committeechair | Farkas, Daniel R. | en |
dc.contributor.committeemember | Brown, Ezra A. | en |
dc.contributor.committeemember | Green, Edward L. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T20:37:26Z | en |
dc.date.adate | 2000-06-19 | en |
dc.date.available | 2014-03-14T20:37:26Z | en |
dc.date.issued | 2000-05-18 | en |
dc.date.rdate | 2000-06-19 | en |
dc.date.sdate | 2000-05-18 | en |
dc.description.abstract | An interesting thing happens when one begins with the axioms of a field, but does not require the associative and commutative properties. The resulting nonassociative division ring is referred to as a ``semifield" in this paper. Semifields have intimate ties to finite projective planes. In short, a finite projective plane with certain restrictions gives rise to a semifield, and, in turn, a finite semifield can be used via a coordinate construction, to build a special finite projective plane. It is also shown that two finite semifields provide a coordinate system for isomorphic projective planes if and only if the semifields are isotopic, where isotopy is a relationship similar to but weaker than isomorphism. Before we prove those results, we explore the nature of isotopy to get a little better feel for the concept. For example, we look at isotopy for associative algebras. We will also examine a particular family of semifields and gather concrete information about solutions to linear equations and isomorphisms. | en |
dc.description.degree | Master of Science | en |
dc.identifier.other | etd-05182000-12080004 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-05182000-12080004/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/32937 | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | sfield.pdf | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | division rings | en |
dc.subject | semifields | en |
dc.subject | projective planes | en |
dc.subject | nonassociative | en |
dc.title | On Nonassociative Division Rings and Projective Planes | en |
dc.type | Thesis | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1