A Bayesian Approach for Estimating Uncertainty in Stochastic Economic Dispatch Considering Wind Power Penetration
dc.contributor.author | Hu, Zhixiong | en |
dc.contributor.author | Xu, Yijun | en |
dc.contributor.author | Korkali, Mert | en |
dc.contributor.author | Chen, Xiao | en |
dc.contributor.author | Mili, Lamine M. | en |
dc.contributor.author | Valinejad, Jaber | en |
dc.date.accessioned | 2024-01-23T18:13:53Z | en |
dc.date.available | 2024-01-23T18:13:53Z | en |
dc.date.issued | 2020-08-10 | en |
dc.description.abstract | The increasing penetration of renewable energy resources in power systems, represented as random processes, converts the traditional deterministic economic dispatch problem into a stochastic one. To estimate the uncertainty in the stochastic economic dispatch (SED) problem for the purpose of forecasting, the conventional Monte-Carlo (MC) method is prohibitively time-consuming for practical applications. To overcome this problem, we propose a novel Gaussian-process-emulator (GPE)-based approach to quantify the uncertainty in SED considering wind power penetration. Facing high-dimensional real-world data representing the correlated uncertainties from wind generation, a manifold-learning-based Isomap algorithm is proposed to efficiently represent the low-dimensional hidden probabilistic structure of the data. In this low-dimensional latent space, with Latin hypercube sampling (LHS) as the computer experimental design, a GPE is used, for the first time, to serve as a nonparametric, surrogate model for the original complicated SED model. This reduced-order representative allows us to evaluate the economic dispatch solver at sampled values with a negligible computational cost while maintaining a desirable accuracy. Simulation results conducted on the IEEE 118-bus test system reveal the impressive performance of the proposed method. | en |
dc.description.version | Published version | en |
dc.format.extent | Pages 671-681 | en |
dc.format.extent | 11 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/TSTE.2020.3015353 | en |
dc.identifier.eissn | 1949-3037 | en |
dc.identifier.issn | 1949-3029 | en |
dc.identifier.issue | 1 | en |
dc.identifier.orcid | Mili, Lamine [0000-0001-6134-3945] | en |
dc.identifier.uri | https://hdl.handle.net/10919/117616 | en |
dc.identifier.volume | 12 | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | Public Domain (U.S.) | en |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | en |
dc.subject | Uncertainty | en |
dc.subject | Computational modeling | en |
dc.subject | Economics | en |
dc.subject | Bayes methods | en |
dc.subject | Stochastic processes | en |
dc.subject | Renewable energy sources | en |
dc.subject | Power systems | en |
dc.subject | Stochastic economic dispatch | en |
dc.subject | reduced-order modeling | en |
dc.subject | manifold learning | en |
dc.subject | uncertainty estimation | en |
dc.subject | renewable energy | en |
dc.title | A Bayesian Approach for Estimating Uncertainty in Stochastic Economic Dispatch Considering Wind Power Penetration | en |
dc.title.serial | IEEE Transactions on Sustainable Energy | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Yijun-Mili_A_Bayesian_Approach_for_Estimating_Uncertainty_in_Stochastic_Economic_Dispatch_Considering_Wind_Power_Penetration.pdf
- Size:
- 2.15 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1