Motion Planning For Autonomous Vehicles In Non-Signalized Intersections

TR Number

Date

2023-07-25

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Real-time path generation, including collision checks, is vital in critical driving scenarios such as navigating non-signalized intersections. These intersections lack organized traffic flow, which raises the risk of accidents. Rapidly Exploring Random Trees (RRT) is a widely adopted algorithm in robotics for motion planning due to its simplicity and probabilistic completeness. Over the years, researchers have made modifications to the basic RRT algorithm to improve its performance in dynamic environments, making it a favored planning algorithm for autonomous driving. Among these variants, probabilistic RRT (pRRT) demonstrates promising capabilities for efficient online replanning. The first part of the thesis thoroughly studies the pRRT algorithm and compares its performance to the standard RRT and RRT* algorithms through Python simulations. The pRRT algorithm outperformed the RRT and RRT* algorithms in terms of success rate and time to find a safe trajectory. The algorithm was implemented experimentally on scaled cars for the validation of its feasibility. The experimental results show good sim-to-real transfer for this algorithm.

The second part of the thesis proposes a novel algorithm for path planning. The algorithm outperforms the standard RRT and pRRT techniques in terms of optimality and conformance to human instincts. The generated paths are much smoother and easier for the controller to track. The AV implementation combines the probabilistic RRT with the RRT-Connect algorithm to mitigate the problem of parameter tuning of the standard pRRT algorithm. The idea is to generate intermediate critical points around the obstacles to grow multiple trees between these points, which are then eventually connected if a safe trajectory is found. The algorithm was tested in simulation and showed comparatively better performance in handling obstacles.

Description

Keywords

Motion Planning, Autonomous Vehicles, Sampling-Based Algorithms, Vehicle Control

Citation

Collections