Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries

dc.contributor.authorMin, Jungkien
dc.contributor.authorBak, Seong-Minen
dc.contributor.authorZhang, Yuxinen
dc.contributor.authorYuan, Mingyuen
dc.contributor.authorPietra, Nicholas F.en
dc.contributor.authorRussell, Joshua A.en
dc.contributor.authorDeng, Zhifeien
dc.contributor.authorXia, Daweien
dc.contributor.authorTao, Leien
dc.contributor.authorDu, Yonghuaen
dc.contributor.authorXiong, Huien
dc.contributor.authorLi, Lingen
dc.contributor.authorMadsen, Louis A.en
dc.contributor.authorLin, Fengen
dc.date.accessioned2025-04-03T17:44:12Zen
dc.date.available2025-04-03T17:44:12Zen
dc.date.issued2025-04-01en
dc.description.abstractPolymer electrolytes hold great promise for safe and high-energy batteries comprising solid or semi-solid electrolytes. Multiphase polymer electrolytes, consisting of mobile and rigid phases, exhibit fast ion conduction and desired mechanical properties. However, fundamental challenges exist in understanding and regulating interactions at the electrode|electrolyte interface, especially when using high-potential layered oxide active materials at the positive electrode. Here we demonstrate that depletion of the mobile conductive phase at the interface contributes to battery performance degradation. Molecular ionic composite electrolytes, composed of a rigid-rod ionic polymer with nanometric mobile cations and anions, serve as a multiphase platform to investigate the evolution of ion conductive domains at the interface. Chemical and structural characterizations enable the visualization of concentration heterogeneity and spatially resolve the interfacial chemical states over a statistically significant field of view for buried interfaces. We report that concentration and chemical heterogeneities prevail at electrode|electrolyte interfaces, leading to phase separation in polymer electrolytes. Understanding the hidden roles of interfacial chemomechanics in polymer electrolytes enables us to design an interphase tailoring strategy based on electrolyte additives to mitigate the interfacial heterogeneity and improve battery performance.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1038/s41565-025-01885-5en
dc.identifier.urihttps://hdl.handle.net/10919/125128en
dc.language.isoenen
dc.publisherNature Portfolioen
dc.rightsPublic Domain (U.S.)en
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/en
dc.titleInvestigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteriesen
dc.title.serialNature Nanotechnologyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Manuscript-6.pdf
Size:
2.39 MB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
Supplementary Information-2.pdf
Size:
8.31 MB
Format:
Adobe Portable Document Format
Description:
Supplementary information
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: