Efficient Prevalence Estimation for Emerging and Seasonal Diseases Under Limited Resources

dc.contributor.authorNguyen, Ngoc Thuen
dc.contributor.committeechairBish, Ebru K.en
dc.contributor.committeememberJin, Ranen
dc.contributor.committeememberBish, Douglas R.en
dc.contributor.committeememberXie, Weijunen
dc.contributor.departmentIndustrial and Systems Engineeringen
dc.date.accessioned2021-11-21T07:00:06Zen
dc.date.available2021-11-21T07:00:06Zen
dc.date.issued2019-05-30en
dc.description.abstractEstimating the prevalence rate of a disease is crucial for controlling its spread, and for planning of healthcare services. Due to limited testing budgets and resources, prevalence estimation typically entails pooled, or group, testing where specimens (e.g., blood, urine, tissue swabs) from a number of subjects are combined into a testing pool, which is then tested via a single test. Testing outcomes from multiple pools are analyzed so as to assess the prevalence of the disease. The accuracy of prevalence estimation relies on the testing pool design, i.e., the number of pools to test and the pool sizes (the number of specimens to combine in a pool). Determining an optimal pool design for prevalence estimation can be challenging, as it requires prior information on the current status of the disease, which can be highly unreliable, or simply unavailable, especially for emerging and/or seasonal diseases. We develop and study frameworks for prevalence estimation, under highly unreliable prior information on the disease and limited testing budgets. Embedded into each estimation framework is an optimization model that determines the optimal testing pool design, considering the trade-off between testing cost and estimation accuracy. We establish important structural properties of optimal testing pool designs in various settings, and develop efficient and exact algorithms. Our numerous case studies, ranging from prevalence estimation of the human immunodeficiency virus (HIV) in various parts of Africa, to prevalence estimation of diseases in plants and insects, including the Tomato Spotted Wilt virus in thrips and West Nile virus in mosquitoes, indicate that the proposed estimation methods substantially outperform current approaches developed in the literature, and produce robust testing pool designs that can hedge against the uncertainty in model inputs.Our research findings indicate that the proposed prevalence estimation frameworks are capable of producing accurate prevalence estimates, and are highly desirable, especially for emerging and/or seasonal diseases under limited testing budgets.en
dc.description.abstractgeneralAccurately estimating the proportion of a population that has a disease, i.e., the disease prevalence rate, is crucial for controlling its spread, and for planning of healthcare services, such as disease prevention, screening, and treatment. Due to limited testing budgets and resources, prevalence estimation typically entails pooled, or group, testing where biological specimens (e.g., blood, urine, tissue swabs) from a number of subjects are combined into a testing pool, which is then tested via a single test. Testing results from the testing pools are analyzed so as to assess the prevalence of the disease. The accuracy of prevalence estimation relies on the testing pool design, i.e., the number of pools to test and the pool sizes (the number of specimens to combine in a pool). Determining an optimal pool design for prevalence estimation, e.g., the pool design that minimizes the estimation error, can be challenging, as it requires information on the current status of the disease prior to testing, which can be highly unreliable, or simply unavailable, especially for emerging and/or seasonal diseases. Examples of such diseases include, but are not limited to, Zika virus, West Nile virus, and Lyme disease. We develop and study frameworks for prevalence estimation, under highly unreliable prior information on the disease and limited testing budgets. Embedded into each estimation framework is an optimization model that determines the optimal testing pool design, considering the trade-off between testing cost and estimation accuracy. We establish important structural properties of optimal testing pool designs in various settings, and develop efficient and exact optimization algorithms. Our numerous case studies, ranging from prevalence estimation of the human immunodeficiency virus (HIV) in various parts of Africa, to prevalence estimation of diseases in plants and insects, including the Tomato Spotted Wilt virus in thrips and West Nile virus in mosquitoes, indicate that the proposed estimation methods substantially outperform current approaches developed in the literature, and produce robust testing pool designs that can hedge against the uncertainty in model input parameters. Our research findings indicate that the proposed prevalence estimation frameworks are capable of producing accurate prevalence estimates, and are highly desirable, especially for emerging and/or seasonal diseases under limited testing budgets.en
dc.description.degreeDoctor of Philosophyen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:20519en
dc.identifier.urihttp://hdl.handle.net/10919/106702en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPrevalence estimationen
dc.subjectTesting pool designen
dc.subjectLimited resourcesen
dc.subjectEmerging and/or seasonal diseasesen
dc.subjectRobust optimizationen
dc.titleEfficient Prevalence Estimation for Emerging and Seasonal Diseases Under Limited Resourcesen
dc.typeDissertationen
thesis.degree.disciplineIndustrial and Systems Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.nameDoctor of Philosophyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nguyen_NT_D_2019.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format