VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Cooperative human-robot search in a partially-known environment using multiple UAVs

TR Number

Date

2020-08-28

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This thesis details out a system developed with objective of conducting cooperative search operation in a partially-known environment, with a human operator, and two Unmanned Aerial Vehicles (UAVs) with nadir, and front on-board cameras. The system uses two phases of flight operations, where the first phase is aimed at gathering latest overhead images of the environment using a UAV’s nadir camera. These images are used to generate and update representations of the environment including 3D reconstruction, mosaic image, occupancy image, and a network graph. During the second phase of flight operations, a human operator marks multiple areas of interest for closer inspection on the mosaic generated in previous step, displayed via a UI. These areas are used by the path planner as visitation goals. The two-step path planner, which uses network graph, utilizes the weighted-A* planning, and Travelling Salesman Problem’s solution to compute an optimal visitation plan. This visitation plan is then converted into Mission waypoints for a second UAV, and are communicated through a navigation module over a MavLink connection. A UAV flying at low altitude, executes the mission plan, and streams a live video from its front-facing camera to a ground station over a wireless network. The human operator views the video on the ground station, and uses it to locate the target object, culminating the mission.

Description

Keywords

UAVs, Cooperative Search, Path planning, Human-Robot cooperation

Citation

Collections