VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Effect of Aligned Nanoscale Surface Structures on Microbial Adhesion

Files

TR Number

Date

2020-01-03

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Microbes in nature live collaboratively in adherent communities, known as biofilms. Biofilms can be contextually beneficial or detrimental. In medical implants, biofilms cause infections leading to additional healthcare costs of billions of dollars. Studies have found that micro/nanoscale surface topography can significantly alter (i.e., promote or hinder) the process of biofilm formation. The formation of biofilm starts with planktonic microbes attach to the surface. To further understand the biophysical underpinning of this process, the effect of aligned nanoscale surface structures on microbial adhesion was studied. To this end, aligned nanofiber coating with controlled fiber diameter and edge-to-edge spacing were manufactured using the Spinneret-based Tunable Engineered Parameters (STEP) techniques. The effect of surface topography on bacterial near-surface motility was studied. The experimental results showed that the bacterial attachment and near-surface motion can be greatly impacted by surface topography. Furthermore, the finding was applied to ureteral stents. The results showed that the aligned nanofiber can significantly reduce the biofilm formation process on ureteral stents.

Description

Keywords

biofilms, bacterial near-surface motion, bacterial adhesion, Pseudomonas aeruginosa

Citation

Collections