Are Particle-Based Methods the Future of Sampling in Joint Energy Models? A Deep Dive into SVGD and SGLD
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis investigates the integration of Stein Variational Gradient Descent (SVGD) with Joint Energy Models (JEMs), comparing its performance to Stochastic Gradient Langevin Dynamics (SGLD). We incorporated a generative loss term with an entropy component to enhance diversity and a smoothing factor to mitigate numerical instability issues commonly associated with the energy function in energy-based models. Experiments on the CIFAR-10 dataset demonstrate that SGLD, particularly with Sharpness-Aware Minimization (SAM), outperforms SVGD in classification accuracy. However, SVGD without SAM, despite its lower classification accuracy, exhibits lower calibration error underscoring its potential for developing well-calibrated classifiers required in safety-critical applications. Our results emphasize the importance of adaptive tuning of the SVGD smoothing factor (