VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Simulating IoT Frameworks and Devices in the Smart Home

dc.contributor.authorKalin, John Howarden
dc.contributor.committeechairTront, Joseph G.en
dc.contributor.committeechairPlymale, William O.en
dc.contributor.committeememberMartin, Thomas L.en
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2017-08-30T08:00:47Zen
dc.date.available2017-08-30T08:00:47Zen
dc.date.issued2017-08-29en
dc.description.abstractThe rapid growth of the Internet of Things (IoT) has led to a situation where individual manufacturers develop their own communication protocols and frameworks that are often incompatible with other systems. Part of this is due to the use of incompatible communication hardware, and part is due to the entrenched proprietary systems. This has created a heterogeneous communication landscape, where it is difficult for devices to coordinate their efforts. To remedy this, a number of IoT Frameworks have been proposed to provide a common interface between IoT devices. There are many approaches to common frameworks, each with their strengths and weaknesses, but there is no clear winner among them. This thesis presents a virtual network testbed for implementing smart home IoT Frameworks. It consists of a simulated home network made up of multiple Virtual Machines (VM), simulated smart home devices and an implementation of the OpenHAB framework to integrate the devices. Simulated devices are designed to be network- accurate representations of actual devices, a LIFX smart lightbulb was developed and an existing Nest thermostat simulation was integrated. The demonstrated setup serves as a proof of concept for the idea of a home network testbed. Such a testbed could allow for the development of new IoT frameworks or the comparison of existing ones, and it could also serve as an education aid to illustrate how smart home IoT devices communicate with one another.en
dc.description.abstractgeneralThe rapid growth of the Internet of Things (IoT) has led to a situation where individual manufacturers develop their own systems for communicating with devices, which don’t work with other devices. A lot of this is due to devices using different technologies; for example, a Bluetooth device trying to talk to a Wi-Fi device. This has created a situation where it is difficult for different devices to communicate. To remedy this, a number of IoT Frameworks have been proposed to provide a common language between IoT devices. There are many approaches to common frameworks, each with their strengths and weaknesses, but there is no clear winner among them. This thesis presents a simulation environment for smart home IoT Frameworks. It consists of a simulated home network made up of multiple Virtual Machines (VM), simulated smart home devices and an implementation of the OpenHAB framework to integrate the devices. Simulated devices are designed to be accurate representations of actual devices, a LIFX smart lightbulb was developed and an existing Nest thermostat simulation was integrated. The demonstrated setup serves as a proof of concept for the idea of a home network testbed. Such a testbed could allow for the development of new IoT frameworks or the comparison of existing ones, and it could also serve as an education aid to illustrate how smart home IoT devices communicate with one another.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:12733en
dc.identifier.urihttp://hdl.handle.net/10919/78767en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectIoTen
dc.subjectSimulationen
dc.subjectSmart Homeen
dc.subjectNetworken
dc.subjectOpenHABen
dc.titleSimulating IoT Frameworks and Devices in the Smart Homeen
dc.typeThesisen
thesis.degree.disciplineComputer Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kalin_JH_T_2017.pdf
Size:
6.33 MB
Format:
Adobe Portable Document Format

Collections