The Influence of the North Atlantic Subtropical High on Atmospheric Rivers Over the Eastern United States
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This study addresses the susceptibility of atmospheric rivers (ARs) to the behavior of the North Atlantic Subtropical High (NASH). ARs are a major mechanism for meridional moisture transport often connected to heavy precipitation and mid-latitude troughs. The NASH, a semi-permanent anticyclone over the subtropical North Atlantic Ocean, has been shown to be significantly influential on precipitation variability over the southeastern United States. A self-organizing map (SOM) was trained on a 4 x 3 regular grid over 250 iterations using ERA5 derived 6-hourly 850 hPa Geopotential Heights ≥ 1535 gpm from 1979-2020. The 12 resulting "nodes" were analyzed with respect to ARs defined by objects of ERA5 derived integrated water vapor transport (IVT) > 500 m-1 s-1 with lengths > 2000 km. Composites of thresholded 850 hPa heights, AR-concurrent PRISM precipitation, AR spatial frequency distribution maps, and seasonal AR frequency histograms per node illustrate seasonal interactions between the NASH and ARs that demonstrate a tendency of more frequent ARs and higher mean AR-driven precipitation over the Mississippi embayment and Ohio River Valley in the summer months, believed to be representative of extreme moisture transport events, when the NASH exhibits increased intensity, spatial expansion, and southwestward migration. Conversely, AR frequency and AR-concurrent precipitation composites suggest wintertime events are mainly supported by dynamically-driven nor'easter and bomb type cyclones when the NASH is constricted, at higher latitudes, and further east. Findings suggest that extreme summertime water vapor transport events associated with an AR are enhanced by the warm season NASH due to its increased intensity and proximity to the eastern US that acts as a supplementary lifting mechanism amidst low dynamic influence.