Electrical Characterization of Gallium Nitride Drift Layers and Schottky Diodes

Files

TR Number

Date

2019-10-09

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Interest in wide bandgap semiconductors such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ) and diamond has increased due to their ability to deliver high power, high switching frequency and low loss electronic devices for power conversion applications. To meet these requirements, semiconductor material defects, introduced during growth and fabrication, must be minimized. Otherwise, theoretical limits of operation cannot be achieved. In this dissertation, the non-ideal current- voltage (IV) behavior of GaN-based Schottky diodes is discussed first. Here, a new model is developed to explain better the temperature dependent performance typically associated with a multi-Gaussian distribution of barrier heights at the metal-semiconductor interface [Section 3.1]. Application of this model gives researches a means of understanding not only the effective barrier distribution at the MS interface but also its voltage dependence. With this information, the consequence that material growth and device fabrication methods have on the electrical characteristics can be better understood. To show its applicability, the new model is applied to Ru/GaN Schottky diodes annealed at increasing temperature under normal laboratory air, revealing that the origin of excess reverse leakage current is attributed to the low-side inhomogeneous barrier distribution tail [Section 3.2]. Secondly, challenges encountered during MOCVD growth of low-doped GaN drift layers for high-voltage operation are discussed with focus given to ongoing research characterizing deep-level defect incorporation by deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) [Section 3.3 and 3.4]. It is shown that simply increasing TMGa so that high growth rates (>4 µm/hr) can be achieved will cause the free carrier concentration and the electron mobilities in grown drift layers to decrease. Upon examination of the deep-level defect concentrations, it is found that this is likely caused by an increase in 4 deep level defects states located at E C - 2.30, 2.70, 2.90 and 3.20 eV. Finally, samples where the ammonia molar flow rate is increased while ensuring growth rate is kept at 2 µm/hr, the concentrations of the deep levels located at 0.62, 2.60, and 2.82 eV below the conduction band can be effectively lowered. This accomplishment marks an exciting new means by which the intrinsic impurity concentration in MOCVD-grown GaN films can be reduced so that >20 kV capable devices could be achieved.

Description

Keywords

allium nitride (GaN), Schottky Diode, wide bandgap semiconductor, power electronic device, barrier inhomogeneity, IVT, CVT, DLTS, SSPC, DLOS

Citation