Modeling the Thermal and Chemical Evolution of the Martian Lithosphere Over Time
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Mars is an ideal planet to study planetary evolution and development, as its crust has been preserved over its history, rather than continuously recycled through subduction, as has happened on Earth. In order to attain a more coherent understanding of martian evolution, we focused on the thermal and petrologic history of the martian lithosphere. We developed a model that calculates the thermal state and melt composition of Mars over time. This model provides insight into the planet's history and enables us to describe how the density and seismic properties have evolved over time. We calculated the temperature profile through the lithosphere and then fit an equation to pre-existing experimental data in order to produce a model to predict the composition of melt produced as a function of pressure and temperature. From the melt model, we see a trend from ultramafic to mafic composition over time. We calculated the density and seismic properties of the lithosphere and found that they increase over time, but decrease with depth, which is consistent with the recent observations of NASA's InSight mission.