Secure Communication Networks for Connected Vehicles

TR Number

Date

2023-01-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

With the advent of electric vehicles (EVs) and the proliferation of vehicle technologies like drive-by-wire and autonomous driving, advanced communication protocols to connect vehicles and the infrastructure have been proposed. However, practical large-scale deployments have been hindered due to caveats such as hardware, and infrastructure demands — including the security of vehicles, given their ubiquitous nature and direct correlation to human safety. As part of this thesis, we look at deploying a practical solution to adopt a secure large-scale vehicle-to-everything (V2X) communication architecture. Then, we also try to analyze and detect vulnerabilities in vehicle-to-grid communication for electric vehicles. In the first work, we analyze, build a proof of concept and evaluate the use of commercial off-the-shelf (COTS) smartphones as secure cellular-vehicle-to-everything (CV2X) radios. Here, we study the various possible network topologies considering the long-term evolution (LTE) technology with necessary latency requirements considering security and the associated overhead. We further simulate the proposed method by considering real-world scalability for practical deployment. In the second work, we analyze the ISO15118 standard for EV-to-electric grid communication involving high levels of energy exchange. We develop a grammatical fuzzing architecture to assess and evaluate the implementation of the standard on a road-deployed vehicle to detect security vulnerabilities and shortcomings.

Description

Keywords

CV2X, V2G, Connected Vehicles, Secure Networks, Trusted Execution

Citation

Collections