Robust Prediction of Large Spatio-Temporal Datasets
dc.contributor.author | Chen, Yang | en |
dc.contributor.committeechair | Chen, Ing-Ray | en |
dc.contributor.committeechair | Clancy, Thomas Charles III | en |
dc.contributor.committeemember | Yu, Guoqiang | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2013-05-25T08:00:39Z | en |
dc.date.available | 2013-05-25T08:00:39Z | en |
dc.date.issued | 2013-05-24 | en |
dc.description.abstract | This thesis describes a robust and efficient design of Student-t based Robust Spatio-Temporal Prediction, namely, St-RSTP, to provide estimation based on observations over spatio-temporal neighbors. It is crucial to many applications in geographical information systems, medical imaging, urban planning, economy study, and climate forecasting. The proposed St-RSTP is more resilient to outliers or other small departures from model assumptions than its ancestor, the Spatio-Temporal Random Effects (STRE) model. STRE is a statistical model with linear order complexity for processing large scale spatiotemporal data. However, STRE has been shown sensitive to outliers or anomaly observations. In our design, the St-RSTP model assumes that the measurement error follows Student's t-distribution, instead of a traditional Gaussian distribution. To handle the analytical intractable inference of Student's t model, we propose an approximate inference algorithm in the framework of Expectation Propagation (EP). Extensive experimental evaluations, based on both simulation and real-life data sets, demonstrated the robustness and the efficiency of our Student-t prediction model compared with the STRE model. | en |
dc.description.degree | Master of Science | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:1079 | en |
dc.identifier.uri | http://hdl.handle.net/10919/23098 | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Robust Prediction | en |
dc.subject | Expectation Propagation | en |
dc.subject | Student's t Model | en |
dc.subject | Bayesian Hierarchical Model | en |
dc.subject | Spatio-Temporal Process | en |
dc.title | Robust Prediction of Large Spatio-Temporal Datasets | en |
dc.type | Thesis | en |
thesis.degree.discipline | Computer Science and Applications | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1