Modeling Tree Growth Responses to Climate Change: A Case Study in Natural Deciduous Mountain Forests

dc.contributor.authorBayat, Mahmouden
dc.contributor.authorKnoke, Thomasen
dc.contributor.authorHeidari, Saharen
dc.contributor.authorHamidi, Seyedeh Kosaren
dc.contributor.authorBurkhart, Harold E.en
dc.contributor.authorJaafari, Abolfazlen
dc.date.accessioned2022-11-10T18:42:28Zen
dc.date.available2022-11-10T18:42:28Zen
dc.date.issued2022-10-31en
dc.date.updated2022-11-10T14:27:21Zen
dc.description.abstractClimate change has significant effects on forest ecosystems around the world. Since tree diameter increment determines forest volume increment and ultimately forest production, an accurate estimate of this variable under future climate change is of great importance for sustainable forest management. In this study, we modeled tree diameter increment under the effects of current and expected future climate change, using multilayer perceptron (MLP) artificial neural networks and linear mixed-effect model in two sites of the Hyrcanian Forest, northern Iran. Using 573 monitoring fixed-area (0.1 ha) plots, we measured and calculated biotic and abiotic factors (i.e., diameter at breast height (DBH), basal area in the largest trees (BAL), basal area (BA), elevation, aspect, slope, precipitation, and temperature). We investigated the effect of climate change in the year 2070 under two reference scenarios; RCP 4.5 (an intermediate scenario) and RCP 8.5 (an extreme scenario) due to the uncertainty caused by the general circulation models. According to the scenarios of climate change, the amount of annual precipitation and temperature during the study period will increase by 12.18 mm and 1.77 °C, respectively. Further, the results showed that the impact of predicted climate change was not very noticeable and the growth at the end of the period decreased by only about 7% annually. The effect of precipitation and temperature on the growth rate, in fact, neutralize each other, and therefore, the growth rate does not change significantly at the end of the period compared to the beginning. Based on the models’ predictions, the MLP model performed better compared to the linear mixed-effect model in predicting tree diameter increment.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBayat, M.; Knoke, T.; Heidari, S.; Hamidi, S.K.; Burkhart, H.; Jaafari, A. Modeling Tree Growth Responses to Climate Change: A Case Study in Natural Deciduous Mountain Forests. Forests 2022, 13, 1816.en
dc.identifier.doihttps://doi.org/10.3390/f13111816en
dc.identifier.urihttp://hdl.handle.net/10919/112560en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectbiotic and abiotic factorsen
dc.subjectclimate changeen
dc.subjectHyrcanian Foresten
dc.subjectmachine learningen
dc.subjectRCP scenariosen
dc.titleModeling Tree Growth Responses to Climate Change: A Case Study in Natural Deciduous Mountain Forestsen
dc.title.serialForestsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
forests-13-01816-v2.pdf
Size:
7.16 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: