Design and Development of an Internet-Of-Things (IoT) Gateway for Smart Building Applications

Files

TR Number

Date

2017-11-02

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

With growing concerns on global energy demand and climate change, it is important to focus on efficient utilization of electricity in commercial buildings, which contribute significantly to the overall electricity consumption. Accordingly, there has been a number of Building Energy Management (BEM) software/hardware solutions to monitor energy consumption and other measurements of individual building loads. BEM software serves as a platform to implement smart control strategies and stores historical data. Although BEM software provides such lucrative benefits to building operators, in terms of energy savings and personalized control, these benefits are not harnessed by most small to mid-sized buildings due to a high cost of deployment and maintenance. A cloud-based BEM system can offer a low-cost solution to promote ease of use and support a maintenance-free installation.

In a typical building, a conventional router has a public address and assigns private addresses to all devices connected to it. This led to a network topology, where the router is the only device in the Internet space with all other devices forming an isolated local area network behind the router. Due to this scenario, a cloud-based BEM software needs to pass through the router to access devices in a local area network. To address this issue, some devices, during operation, make an outbound connection to traverse through the router and provide an interface to itself on the Internet. Hence, based on their capability to traverse through the router, devices in a local area network can be distinguished as cloud and non-cloud devices. Cloud-based BEM software with sufficient authorization can access cloud devices. In order to access devices adhering to non-cloud protocols, cloud-based BEM software requires a device in the local area network which can perform traversal through the router on behalf of all non-cloud devices. Such a device acts as an IoT gateway, to securely interconnect devices in a local area network with cloud-based BEM software.

This thesis focuses towards architecting, designing and prototyping an Internet-of-Things (IoT) gateway which can perform traversal on behalf of non-cloud devices. This IoT gateway enables cloud-based BEM software to have a comprehensive access to supported non-cloud devices. The IoT gateway has been designed to support BACnet, Modbus and HTTP RESTful, which are the three widely adopted communication protocols in the building automation and control domain. The developed software executes these three communication protocols concurrently to address requests from cloud-based BEM system. The performance of the designed architecture is independent of the number of devices supported by the IoT gateway software.

Description

Keywords

IoT, Smart Buildings, IoT Gateway, Building Energy Management

Citation

Collections