Strongly-Coupled Conjugate Heat Transfer Investigation of Internal Cooling of Turbine Blades using the Immersed Boundary Method

Files

TR Number

Date

2019-07-02

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The present thesis focuses on evaluating a conjugate heat transfer (CHT) simulation in a ribbed cooling passage with a fully developed flow assumption using LES with the immersed boundary method (IBM-LES-CHT). The IBM with the LES model (IBM-LES) and the IBM with CHT boundary condition (IBM-CHT) frameworks are validated prior to the main simulations by simulating purely convective heat transfer (iso-flux) in the ribbed duct, and a developing laminar boundary layer flow over a two-dimensional flat plate with heat conduction, respectively. For the main conjugate simulations, a ribbed duct geometry with a blockage ratio of 0.3 is simulated at a bulk Reynolds number of 10,000 with a conjugate boundary condition applied to the rib surface. The nominal Biot number is kept at 1, which is similar to the comparative experiment. As a means to overcome a large time scale disparity between the fluid and the solid regions, the use of a high artificial solid thermal diffusivity is compared to the physical diffusivity. It is shown that while the diffusivity impacts the instantaneous fluctuations in temperature, heat transfer and Nusselt numbers, it has an insignificantly small effect on the mean Nusselt number. The comparison between the IBM-LES-CHT and iso-flux simulations shows that the iso-flux case predicts higher local Nusselt numbers at the back face of the rib. Furthermore, the local Nusselt number augmentation ratio (EF) predicted by IBM-LES-CHT is compared to the body fitted grid (BFG) simulation, experiment and another LES conjugate simulation. Even though there is a mismatch between IBM-LES-CHT prediction and other studies at the front face of the rib, the area-averaged EF compares reasonably well in other regions between IBM-LES-CHT prediction and the comparative studies.

Description

Keywords

Conjugate heat transfer, immersed boundary method, internal cooling, fully developed assumption

Citation

Collections