Characterization and treatment of UV quenching substances and organic nitrogen in landfill leachates and thermal hydrolysis/anaerobic digestion centrate

dc.contributor.authorGupta, Abhinaven
dc.contributor.committeechairNovak, John T.en
dc.contributor.committeememberGoldsmith, Charles Douglasen
dc.contributor.committeememberVikesland, Peter J.en
dc.contributor.departmentCivil and Environmental Engineeringen
dc.date.accessioned2013-05-15T08:00:34Zen
dc.date.available2013-05-15T08:00:34Zen
dc.date.issued2013-05-14en
dc.description.abstractLandfill leachates and thermal hydrolysis pretreated anaerobic digestion centrate can quench UV light at publicly owned treatment works (POTWs). Increased eutrophication, has led to tightening of nutrient discharge limits in some regions of the country. Biologically recalcitrant organic nitrogen, adds to effluent nitrogen making it difficult to meet these requirements. The study aimed at characterizing landfill leachate and centrate fractions to develop an understanding that might help design on-site treatment methods. Leachates varying in on-site treatment and ages were fractionated on basis of hydrophobic nature. Humic substances were the major UV light quenching fractions. Majority of the humic substances were > 1 kDa molecular weight cut off (MWCO) indicating that membrane treatment might be effective for UV quenching substances removal. UV absorbing substances were found to be more bio-refractory than organic carbon. Significant decrease in humic substances with long term landfilling indicated that age was important in determining the potential for leachates to impact the UV disinfection. Organic nitrogen was observed to be hydrophilic in nature (mostly < 1 kDa). Proteins which are easily biodegradable contributed around one-third of the organic nitrogen. For thermal hydrolysis centrate, the optimum treatment depended on particle size and hydrophobic nature. Biological treatment was observed to be more effective for the removal of organic matter and UV254 quenching substances for fractions < 300 kDa. Biological treatment had little impact on organic nitrogen. Coagulation-flocculation is an effective treatment for higher molecular weight (MW) fractions whereas a membrane bioreactor would be more suitable for smaller MW fractions.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:762en
dc.identifier.urihttp://hdl.handle.net/10919/22049en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectLandfill leachatesen
dc.subjectthermal hydrolysisen
dc.subjectanaerobic digestionen
dc.subjectcentrate treatmenten
dc.subjectcharacterizationen
dc.subjectbiological treatmenten
dc.subjectmembranen
dc.titleCharacterization and treatment of UV quenching substances and organic nitrogen in landfill leachates and thermal hydrolysis/anaerobic digestion centrateen
dc.typeThesisen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gupta_A_T_2013.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format

Collections