Network-Based Naval Ship Distributed System Design using Architecture Flow Optimization

TR Number

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This thesis describes the application of a distributed system architecture framework and Architecture Flow Optimization (AFO) to naval ship Concept & Requirements Exploration (C&RE). It describes refinements to both C&RE and AFO, and naval surface combatant concept design case studies. The architectural framework decomposes naval ship distributed systems into the physical, logical, and operational architectures representing the spatial, functional, and temporal relationships of distributed systems respectively. This decomposition greatly simplifies the Mission, Power, and Energy System (MPES) design process for use in C&RE. AFO is a network-based linear programming optimization method used to design and analyze MPES at a sufficient level of detail to understand system energy flow, define MPES architecture and sizing, reduce system vulnerability and improve system reliability. AFO incorporates system topologies, energy coefficient component models, preliminary arrangements, and (nominal and damaged) steady state scenarios to minimize the energy flow cost required to satisfy all operational scenario demands and constraints. This thesis provides an overview of design tools developed to implement this process and methods, including objective attribute metrics for cost, effectiveness and risk, ship synthesis model, hullform exploration and MPES explorations using design of experiments (DOEs) and response surface models.

Description

Keywords

Ship Design, Naval Ship, Distributed System, Vulnerability, Survivability

Citation

Collections