Urban Air Mobility (UAM) Landing Site Feasibility Analysis: A Multi-Attribute Decision Making Approach

TR Number

Date

2020-01-29

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This thesis presents methods to place landing sites for the Urban Air Mobility (UAM) concept. The analysis shows an integrated approach to establish UAM landing site requirements, place landing sites based on predicted demand, and estimate the costs associated with UAM landing sites. This thesis also makes estimates of fares associated with UAM operations. The methods presented are applied to three large urban centers in the United States. The analysis assumes an all-electric, advanced multi-rotor aircraft with autonomous navigational and Vertical Takeoff and Landing (VTOL) capabilities to estimate UAM landing site requirements. The thesis presents the land area requirements of UAM landing sites using Federal Aviation Administration heliport design criteria considering ground-taxi configurations. The analysis performed employs a UAM vehicle with an equivalent Rotor Diameter (RD) of 43 feet. In this thesis, UAM demand is estimated using a mode choice model developed in a companion study (UAM Scenario Analysis).

The methodology to locate UAM landing sites includes splitting and consolidation of UAM landing sites considering the Zillow Transaction and Assessment Dataset (ZTRAX) to introduce land-use size and cost constraints. The sites are split using a K-Means clustering method and are consolidated using a simple center of mass approach where the demand of each landing site is analogous to mass. The results presented in this thesis apply to 75 and 200 landing sites in each region and assume passenger Cost-Per-Mile (CPM) of $1.20 and $1.80, respectively. This thesis presents a comparative study on how the availability of land affects the splitting, consolidation, and relocation of UAM landing sites for each region, the number of landing sites, and the cost per passenger-mile.

Description

Keywords

Urban Air Mobility, Landing Sites, Northern California, Southern California, Dallas-Fort Worth

Citation

Collections