Cation and Anion Transport in a Dicationic Imidazolium-Based Plastic Crystal Ion Conductor

dc.contributor.authorKidd, Bryce Edwinen
dc.contributor.committeechairMadsen, Louis A.en
dc.contributor.committeememberMorris, John R.en
dc.contributor.committeememberGibson, Harry W.en
dc.contributor.departmentChemistryen
dc.date.accessioned2013-07-11T08:00:35Zen
dc.date.available2013-07-11T08:00:35Zen
dc.date.issued2013-07-10en
dc.description.abstractHere we investigate the organic ionic plastic crystal (OIPC) 1,2-bis[N-(N\'-hexylimidazolium-d2(4,5))]C2H4 2PF6- in one of its solid plastic crystal phases by means of multi-nuclear solid-state (SS) NMR and pulsed-field-gradient (PFG) NMR. We quantify distinct cation and anion diffusion coefficients as well as the diffusion activation energies (Ea) in this dicationic imidazolium-based OIPC. Our studies suggest a change in transport mechanism for the cation upon varying thermal and magnetic treatment (9.4 T), evidenced by changes in cation and anion Ea. Moreover, variable temperature 2H SSNMR lineshapes further support a change in local molecular environment upon slow cooling in B0. Additionally, we quantify the percentage of mobile anions as a function of temperature from variable temperature 19F SSNMR, where two distinct spectral features are present. We also comment on the pre-exponential factor (D0), giving insight into the number of degrees of freedom for both cation and anion as a function of thermal treatment. In conjunction with previously reported conductivity values for this class of OIPCs and the Stokes-Einstein relation, we propose that ion conduction is dominated by anion diffusion between crystallites (i.e., grain boundaries). Using our experimentally determine diffusion coefficient and previously reported PF6- hydrodynamic radius (rH), viscous (" = 4.1 Pa " s) ionic liquid (IL) is present with a cation rH of 0.34 nm. NMR measurements are very powerful in elucidating fundamental OIPC properties and allow a deeper understanding of ion transport within such materials.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:1172en
dc.identifier.urihttp://hdl.handle.net/10919/23300en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectorganic ionic plastic crystalen
dc.subjectgrain boundaryen
dc.subjectNMRen
dc.subjectself-diffusionen
dc.subjectactivation energyen
dc.subjectStokes-Einstein relationen
dc.titleCation and Anion Transport in a Dicationic Imidazolium-Based Plastic Crystal Ion Conductoren
dc.typeThesisen
thesis.degree.disciplineChemistryen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kidd_BE_T_2013.pdf
Size:
17.94 MB
Format:
Adobe Portable Document Format

Collections