VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Molecular Dynamics Simulation of Forsterite and Magnesite Mechanical Properties: Effect of Carbonation on Comminution Energy

dc.contributor.authorTalapatra, Akashen
dc.contributor.committeechairNojabaei, Baharehen
dc.contributor.committeememberPandey, Rohiten
dc.contributor.committeememberMolaei, Fatemehen
dc.contributor.departmentMining and Minerals Engineeringen
dc.date.accessioned2024-10-31T14:24:19Zen
dc.date.available2024-10-31T14:24:19Zen
dc.date.issued2024-10-09en
dc.description.abstractMineral carbonation contributes to CO2 reduction, and it may also reduce the cost of mineral processing by improving the mechanical properties of rock/ore. Here, we study and compare the mechanical properties of two minerals, forsterite (Mg2SiO4) and magnesite (MgCO3) using molecular dynamics (MD) simulation. The goal is to understand whether carbonation results in hardness reduction of rock and subsequently comminution energy during the crushing and processing of the ore. We investigated how these materials respond to different physical conditions, such as temperature and strain rate, to understand their behavior under stress. By examining the molecular structure of forsterite and magnesite at temperatures ranging from 300K to 700K and strain rates of 0.001, 0.01, and 0.05ps-1, we observed how they deform when subjected to both tensile and compressive forces. This study has shown that at higher temperatures, both forsterite and magnesite monocrystals undergo deformation more easily under pressure. Forsterite is found relatively hard and shows maximum strength before deformation compared to magnesite. The stiffness of magnesite decreases at elevated temperatures which reduces the energy requirement for the comminution process. We also looked at how pressure and temperature changes affected their elasticity. Ultimately, our findings suggest that magnesite may be more suitable for processes like comminution, which involves breaking down materials, compared to forsterite. This insight into the effects of mineral carbonation on geomaterials contributes to our understanding of how these minerals behave under different conditions and could have implications for various industries.en
dc.description.abstractgeneralMineral carbonation contributes to CO2 reduction, and it may also reduce the cost of mineral processing by improving the mechanical properties of rock/ore. Here, we study and compare the mechanical properties of two minerals, forsterite (Mg2SiO4) and magnesite (MgCO3) using molecular dynamics (MD) simulation. The goal is to understand whether carbonation results in hardness reduction of rock and subsequently comminution energy during the crushing and processing of the ore. We investigated how these materials respond to different physical conditions, such as temperature and strain rate, to understand their behavior under stress. By examining the molecular structure of forsterite and magnesite at temperatures ranging from 300K to 700K and strain rates of 0.001, 0.01, and 0.05ps-1, we observed how they deform when subjected to both tensile and compressive forces. This study has shown that at higher temperatures, both forsterite and magnesite monocrystals undergo deformation more easily under pressure. Forsterite is found relatively hard and shows maximum strength before deformation compared to magnesite. The stiffness of magnesite decreases at elevated temperatures which reduces the energy requirement for the comminution process. We also looked at how pressure and temperature changes affected their elasticity. Ultimately, our findings suggest that magnesite may be more suitable for processes like comminution, which involves breaking down materials, compared to forsterite. This insight into the effects of mineral carbonation on geomaterials contributes to our understanding of how these minerals behave under different conditions and could have implications for various industries.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://hdl.handle.net/10919/121513en
dc.publisherVirginia Techen
dc.subjectmineral carbonationen
dc.subjectcommunication energyen
dc.subjectstress-strain relationshipen
dc.subjectelastic propertiesen
dc.subjectradial distribution functionen
dc.titleMolecular Dynamics Simulation of Forsterite and Magnesite Mechanical Properties: Effect of Carbonation on Comminution Energyen
dc.typeThesisen
dc.type.dcmitypeTexten
thesis.degree.disciplineMining Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MS THESIS_Akash.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections